首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N,N′-phenylenebis(salicylideaminato) (L) has been used to detect trace amounts of zinc ion in acetonitrile–water solution by fluorescence spectroscopy. The fluorescent probe undergoes fluorescent emission intensity enhancement upon binding to zinc ions in MeCN/H2O (1:1, v/v) solution. The fluorescence enhancement of L is attributed to the 1:1 complex formation between L and Zn(II), which has been utilized as the basis for selective detection of Zn(II). The linear response range for Zn(II) covers a concentration range of 1.6 × 10?7 to 1.0 × 10?5 mol/L, and the detection limit is 1.5 × 10?7 mol/L. The fluorescent probe exhibits high selectivity over other common metal ions, and the proposed fluorescent sensor was applied to determine zinc in water samples and waste water.  相似文献   

2.
Since the copper ions (Cu2+) play a fatal role in many foundational physiological processes, it is important to develop a simple, highly sensitive and selective sensor for Cu2+ detection in living systems. Herein, an intramolecular charge transfer (ICT) and dansyl-based fluorescent chemosensor 1 was designed, synthesized and characterized for the sensitive and selective quantification of Cu2+. It exhibited remarkable fluorescence quenching upon addition of Cu2+ over other selected metal ions, attributed to the complex formation between 1 and Cu2+ with the association constant 6.7 × 105 M?1. The sensor 1 showed a fast and linear response towards Cu2+ in the concentration range from 0 to 12.5 × 10?6 mol L?1 with the detection limit of 2.5 × 10?7 mol L?1. This detection could be carried out in a wide pH range of 5.0–14. Furthermore, sensor 1 can be used for detecting Cu2+ in living cells.  相似文献   

3.
Quinoline-based fluorescent probe as a recognition unit was designed and synthesized in this study. The probe R1 displayed excellent selectivity and sensitivity for cadmium ions (Cd2+) over a wide range of metal ions in acetonitrile-water (MeCN-H2O) mixed solution. In order to better understand the recognition mechanism between probe and Cd2+, the density functional theory calculations were performed. Finally, the colorimetric experiment result was observed and conveniently monitored by the naked eye, and a visual detection limit of 4 × 10?6 mol L?1 was achieved. These experimental results indicated the promising potential of the probe to detect Cd2+ in biological system. Furthermore, the probe R1 was successfully used for the highly sensitive detection of Cd2+ in living cells.  相似文献   

4.
Two low cytotoxic fluorescence probes Rb1 and Rb2 detecting Fe3+ were synthesized and evaluated. Rb1 and Rb2 exhibited an excellent selectivity to Fe3+, which was not disturbed by Ag+, Li+, K+, Na+, NH4+, Fe2+, Pb2+, Ba2+, Cd2+, Ni2+, Co2+, Mn2+, Zn2+, Mg2+, Hg2+, Ca2+, Cu2+, Ce3+, AcO?, Br?, Cl?, HPO42?, HSO3?, I?, NO3?, S2O32?, SO32? and SO42? ions. The detection limits were 1.87 × 10?7 M for Rb1 and 5.60 × 10?7 M for Rb2, respectively. 1:1 stoichiometry and 1:2 stoichiometry were the most likely recognition mode of Rb1 or Rb2 towards Fe3+, and the corresponding OFF–ON fluorescence mechanisms of Rb1 and Rb2 were proposed.  相似文献   

5.
A new benzothizole-based fluorescent probe 1 for Hg2+ recognition utilizing “ESIPT+AIE” strategy has been developed. In THF/H2O (1:1, v/v, PBS 20 mM, pH = 8.5) mixed solution, probe 1 displays rapid fluorescence responses to Hg2+ ions with high selectivity and sensitivity through Hg2+-triggered releasing of a compound possessing “ESIPT+AIE” characteristics. Cell imaging investigations indicate that probe 1 is cell permeable with low toxicity to MCF-7 cells, and applicable to detect Hg2+ ions in living MCF-7 cells.  相似文献   

6.
A simple Schiff base CTS, synthesized between 2-hydroxy-1-naphthaldehyde and 2-benzylthio-ethanamine, was found to be a good turn-on fluorescence probe for the detection of Zn2+, due to the restriction of the rotation of the bond between CN and naphthalene ring and/or the blocking of the photo-induced electron transfer (PET) mechanism of the nitrogen atom to naphthalene ring. Excellent selectivity for Zn2+ was evidenced, over many other competing ions, including Fe3+, Cr3+, Ni2+, Co2+, Fe2+,Mn2+, Ca2+, Hg2+, Pb2+, Cu2+, Mg2+, Ba2+, Cd2+, Ag+, Li+, K+, and Na+, in EtOH/HEPES buffer (95:5, v/v, pH = 7.4). It was noteworthy that Cd2+ had no interference with Zn2+. The stoichiometric complex of CTS-Zn2+ was determined to be 2:1 for CTS and Zn2+ in molar, based on the Job plot and single crystal X-ray diffraction data. The binding constant of the complex was 85.7 M?2 with a detection limit of 5.03 × 10?7 M. The fluorescence bio-imaging capability of CTS to detect Zn2+ in live cells was also studied. These results indicated that CTS could serve as a favorable probe for Zn2+.  相似文献   

7.
Novel Cu(II) (1) and Zn(II) (2) complexes with 4-(1-(4-morpholinophenyl)ethylideneamino)pyrimidine-5-carbonitrile) (L) have been synthesized and characterized by various spectroscopic and analytical techniques. DFT (density functional theory) studies result confirms that, LMCT mechanism have been done between L and M(II) ions. The antimicrobial studies indicate that the ligand L and complexes 1 & 2 exhibit higher activity against the E. coli bacteria and C. albicans fungi. The groove binding mode of ligand L and complexes 1 & 2 with CT-DNA have been confirmed by electronic absorption, competitive binding, viscometric and cyclic voltammetric studies. The electronic absorption titration of ligand L and complexes 1 & 2 with DNA have been carried out in different buffer solutions (pH 4.0, 7.0 & 10.0). The Kb values of ligand L and complexes 1 & 2 are higher in acidic buffer at pH 4.0 (Kb = 2.42 × 105, L; 2.8 × 105, 1; 2.65 × 105, 2) and the results revealed that, the interaction of synthesized compounds with DNA were higher in the acidic medium than basic and neutral medium. Furthermore, CT-DNA cleavage studies of ligand L and complexes 1 & 2 have been studied. The in vitro anticancer activities results show that complexes 1 & 2 have moderate cytotoxicity against cancer cell lines and low toxicity on normal cell line than ligand L.  相似文献   

8.
We herein designed and synthesized a light-up fluorescent probe L1 for Hg2+ species, which is based on indole derivative and Rhodamine fluorophore. The new probe can show a linear response to Hg2+ with high sensitivity and selectivity. As the Hg2+ concentration changed from 0 to 450 μM, the fluorescence intensity of L1 at 575 nm changed from 50 to 6181 (~120-fold). The detection limit of the probe was 5.0 × 10?8 M. Besides, we have successfully applied L1 to monitor Hg2+ species in living MCF-7 cells by way of fluorescence imaging.  相似文献   

9.
In this work, we report a novel fluorescence chemosensor HM based on the coumarin fluorophore for the quantification of Zn2+ and AcO?. HM specifically binds to Zn2+ in the presence of other competing cations, and evident changes in UV–vis and fluorescence spectra in HEPES buffer are noticed. The in situ generated HM-Zn2+ complex solution exhibit a high selectivity toward AcO? via Zn2+ displacement approach. The detection limits of HM for Zn2+ and HM-Zn2+ for AcO? were estimated to be 7.24 × 10?8 M and 9.41 × 10?8 M, respectively. HM and the resultant complex HM-Zn2+ exhibit low cytotoxicity and cell-membrane permeability, which makes them capable of Zn2+ and AcO? imaging in living Hep G2 cells. A B3LYP/6-31G(d,p) basis set was employed for optimization of HM and HM-Zn2+ complex.  相似文献   

10.
Nanoparticles with different shapes were prepared at the air/water interface via hydrolysis of Pb2+ ions under Langmuir films of poly(N-vinylcarbazole) (PVK) at 30–50 °C. It was found that round or irregular nanoparticles with the size of several to several tens of nanometers were formed when the PbCl2 aqueous solution with the concentration of 1 × 10?3 mol L?1 was used as subphase, while single-crystalline quasi-hexagonal nanoplates, nanostars and dendrites with the size of several hundreds of nanometers were obtained when the subphase concentration was 1 × 10?4 mol L?1. Analysis on the selective-area electron diffraction (SAED) patterns revealed that the formed nanoparticles are β-PbO. The formation of the nanostructures should be attributed to the formation and dehydration of lead hydroxide, diffuse-limited growth and aggregation of nanoparticles at the air/water interface.  相似文献   

11.
We developed a simple Cu2+-selective turn-on fluorescence signaling probe based on the hydrolysis of 1-pyrenecarbohydrazide (1) to 1-pyrenecarboxylic acid. Probe 1 exhibited prominent fluorescence signaling of Cu2+ ions in a 10% aqueous Tris-buffered (pH 7.0) DMSO solution with a detection limit of 5.93 × 10?8 M. Signaling with control compounds derived from pyreneacetic acid and pyrenebutyric acid showed that the fluorescence signal became less pronounced as the distance between the hydrazide functionality and the pyrene fluorophore increased. As a practical application, this probe was employed for the determination of Cu2+ in a simulated semiconductor wastewater.  相似文献   

12.
A new fluorescent turn-on chemosensor for Al3+ based on a diarylethene unit was designed and synthesized. Photochromism, fluorescence switch, and metal ion recognition behaviors of this diarylethene derivative were investigated by absorption and fluorescence emission spectra. It shows an outstanding fluorometric sensing ability toward Al3+ ion, and the detection limit was measured to be 9.3 × 10?8 mol L?1 via fluorescence methods. Based on these interesting properties, a combinational logic circuit was constructed successfully.  相似文献   

13.
A new tetraphenylethene-based fluorescent probe 2-(quinolin-8-yliminomethyl)-4-triphenylvinyl-phenol (HL) for detecting Zn2+ ion through the excited state intramolecular proton transfer (ESIPT) and chelation enhanced fluorescence (CHEF) processes has been designed and synthesized. The results show that HL emits relatively strong blue fluorescence at 460 nm without Zn2+ ion, however, probe HL displays highly pink fluorescent emission at 600 nm when adding Zn2+ ion. The fluorescent emission of HL appears an extremely large Stokes shift, which effectively reduces the interference of background signal. The limit of detection of HL for Zn2+ ion can reach to 9.0 × 10–8 M.  相似文献   

14.
A colorimetric and fluorescent probe L has been designed and synthesized, which bearing the double azine moiety and showing a detection limit of 2.725 × 10?7 M towards Zn2+. Based on the basic recognition mechanism of ESIPT and CHEF effect, the L has high selectivity and sensitivity to only Zn2+ (not Fe3+, Hg2+, Ag+, Ca2+, Co2+, Ni2+, Cd2+, Pb2+, Cr3+, and Mg2+) within the physiological pH range (pH = 7.0–8.4) and showed a fluorescence switch. Moreover, this detection progress occured in the DMSO/H2O ~ HEPES buffer (80/20, v/v; pH 7.23) solution which can conveniently used on test strip.  相似文献   

15.
A novel quinoline-functionalized Schiff-base derivative PY was designed and synthesized. Sensor PY displayed highly selective and sensitive fluorescence enhancement and naked-eye color change to Fe3+ in the presence of other competing cations. The mechanisms have been supported by Job’s plot evaluation, FT-MS and theoretical calculations. The in situ generated PY-Fe3+ complex solution exhibited a high selectivity toward PPi via Fe3+ displacement approach. The detection limits of sensor PY to Fe3+ and PY-Fe3+ complex to PPi were estimated to be 4.24 × 10?8 M and 8.18 × 10?8 M, respectively. This successive recognition feature of sensor PY makes it has a potential utility for Fe3+ and PPi detection in aqueous solution. A B3LYP/6-31G(d,p) basis set was employed for optimization of PY and PY-Fe3+ complex.  相似文献   

16.
This paper described a new approach for the preconcentration of lead (Pb2+) by temperature controlled ionic liquid-dispersive liquid phase microextraction (TIL-DLME) prior to analyzing by flame atomic absorption spectrometry (FAAS). An ionic liquid (IL) 1-Butyl-3-methylimidazolium hexafluorophosphate [C4MIM][PF6] was used as an extractant solvent. The Pb2+ was complexed with ammonium pyrrolidinedithiocarbamate (APDC) and then entered into the infinite IL drops at high temperature (> 70 °C). Important variables affecting the microextraction efficiency such as pH, ligand concentration, amount of IL, temperature and incubation time were investigated. The results showed that the coexistent ions had no obvious negative effect on the determination of Pb2+. In the optimum experimental conditions, the limit of detection (LOD) and the enhancement factor (EF) were 0.13 μg L? 1 and 93, respectively. The relative standard deviation (RSD) of 10 μg L? 1 Pb2+ was 4.3%. The developed method was validated by determining Pb2+ in certified reference material (CRM) and the results showed that the determined values of Pb2+ were in good agreement with the certified value. The proposed method was applied satisfactorily for the preconcentration of Pb2+ in acid digested blood samples of children with different respiratory disorders.  相似文献   

17.
A rhodamine-conjugated coumarin (L) was used in designing a selective fluorescence chemosensor for the determination of trace amounts of Cr3+ ions in acetonitrile–water (MeCN/H2O (90:10, %v/v) solutions. The intensity of the fluoresce emission of the chemosensor is intensified upon addition of Cr3+ ions in MeCN/H2O (90:10, %v/v) solutions, due to the formation of a selective 1:1 complex between L and Cr3+ ions. The fluorescence enhancement versus Cr3+ concentration has been found to be linear from 1.0?×?10?7 to 1.8?×?10?5 M and a detection limit of 7.5?×?10?8 M. The proposed fluorescent probe proved to be highly selective towards Cr3+ ions as compared to other common metal ions and could be successfully applied to the determination of Cr3+ concentrations in some water and wastewater samples.  相似文献   

18.
Development of fluorescent chemical sensors for fluoride is important due to increased use of fluoride in environment. A fused bis[2-(2′-hydroxyphenyl)benzoxazole] 5, which is capable of giving ESIPT emission, is found to be a useful fluorescent sensor for fluoride detection. Upon binding to fluoride, bis(HBO) 5 shows a large spectral shift in both fluorescence (from ~490 nm to ~440 nm) and absorption (from 353 nm to 392 nm). In comparison with the isomeric 4, bis(HBO) 5 dramatically improves the sensitivity in fluoride binding (by an order of magnitude), revealing a large impact of regiochemistry on the sensor performance. 1H NMR has been used to study the fluoride binding, and to correlate the intramolecular hydrogen bonding with the fluoride response. Sensitivity of 5 towards fluoride is as low as 10?5 M. Bis(HBO) 5 also showed excellent selectivity towards fluoride while being silent to other anions (Cl?, Br?, HS? and PO43?), thus making 5 a potentially useful probe.  相似文献   

19.
A novel thiophene attached anthracene (TA) based fluorescent compound was designed and synthesized. The TA showed a high quantum yield (Qy = 0.34) in regard to fluorescence. We applied this TA compound to detect specific metal compound and found that it could identify CuCl2 from other metals through dramatic fluorescence change at λmax = 460 nm. It showed strong quenching fluorescence property with CuCl2 while with other metal compounds it exhibited strong blue fluorescence emission. UV/Vis absorption spectroscopy clearly demonstrated that the quenching property of TA at λmax = 460 nm was due to overlapping of the fluorescence peak of TA at λmax = 460 nm and the absorption band of CuCl2 (from 190 nm to 525 nm). Binding constant (K′), which was 0.0895 mM?2, indicated a complexation ratio between TA and CuCl2 as 1:2 and this interaction induced quenching property.  相似文献   

20.
A flow electrochemical sensor for trace analysis of lead, using TETRAM-modified graphite felt electrode is reported here. TETRAM ligands are covalently immobilized on the graphite felt by chemical reactions on amino acid linkers, previously attached to the electrode by an electrochemical process. The detection is performed in two steps: the preconcentration of Pb2+ ions by complexation with immobilized TETRAM and the analysis by linear sweep stripping voltammetry. A calibration curve typical of at least two equilibrium processes is obtained. A limit of detection of 2.5 × 10?8 mol L?1 is reached for a total analysis time of 35 min. Interestingly, the flow sensor shows a good selectivity toward lead in presence of Cu2+, Cd2+, Ni2+, Zn2+ and Co2+ ions. This new sensor exhibits improved sensitivity and selectivity compared to the previously reported sensor using cyclam-modified electrode. It is stable after three uses, using strong acidic medium for the regeneration step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号