首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Developing an artificial visual sensory system requires optoelectronic materials and devices that can mimic the behavior of biological synapses. Organic/polymeric semiconductors have emerged as promising candidates for optoelectronic synapses due to their tunable optoelectronic properties, mechanic flexibility, and biological compatibility. In this review, we discuss the recent progress in organic optoelectronic synaptic materials and devices, including their design principles, working mechanisms, and applications. We also highlight the challenges and opportunities in this field and provide insights into potential applications of these materials and devices in next-generation artificial visual systems. By leveraging the advances in organic optoelectronic materials and devices, we can envision its future development in artificial intelligence.  相似文献   

2.
Progresses in the design and application of conjugated small molecules, oligomers and polymers have empowered rapid development of organic electronic technology as an alternative to conventional devices. Among the numerous organic electronic materials, benzotrithiophene (BTT)-based oligomers and polymers have recently come in the limelight demonstrating great potential in organic electronics as high performance photovoltaic devices, field-effect transistors, electrochromic materials, high-area capacitors and charge carrier discotic liquid crystals. In this digest, we propose an overview of the organic electronic materials based on BTT isomers, highlighting the structure-performance relationship. The results obtained so far clearly indicate that the BTT isomers are among the most promising building blocks for the development π-extended materials for optoelectronic applications in the near future.  相似文献   

3.
The knowledge of azaborine chemistry is growing as an important branch in organic semiconductor materials. Specifically, BN-embedded aromatic compounds have attracted great attention due to their fascinating properties resulted from the replacement of CC unit with isoelectronic BN unit in aromatics. Though great insights have been provided into the synthetic chemistry and photophysical properties of BN-embedded aromatics, their applications in optoelectronic areas are still at a young stage. This short review summarizes the recent progress of BN-embedded aromatics with optoelectronic applications in organic field-effect transistors, organic light-emitting diodes, organic photovoltaics, stimuli-responsive luminescent devices, and chemical sensors.  相似文献   

4.
Owing to their versatile (opto)electronic properties, conjugated polymers have found application in several organic electronic devices. Cross-coupling reactions such as Stille, Suzuki, Kumada couplings, and direct arylation reactions have proved to be effective for their synthesis. More atom-efficient oxidative direct arylation polymerization has also been reported for making homopolymers. However, growing interest toward donor-acceptor polymers has led to the recent emergence of cross-dehydrogenative coupling (CDC) polymerization to synthesize alternating copolymers without any prefunctionalization of monomers. Metal-catalyzed cross-coupling of two simple arenes via double C−H activation, or of an arene with an alkene via oxidative Heck-type reaction have been used so far for CDC polymerization. In this article, we discuss the development of CDC polymerization protocols along with the relevant small molecule CDC reactions for an improved understanding of these reactions.  相似文献   

5.
The very concept of dye and pigment chemistry that was long known to the industrial world underwent a radical revision after the discovery and commercialization of dyes such as mauveine, indigo, and so on. Apart from their conventional role as coloring agents, organic dyes, and pigments have been identified as indispensable sources for high-end technological applications including optical and electronic devices. Simultaneous with the advancement in the supramolecular chemistry of π-conjugated systems and the divergent evolution of organic semiconductor materials, several dyes, and pigments have emerged as potential candidates for contemporary optoelectronic devices. Of all the major pigments, diketopyrrolopyrrole (DPP) better known as the ‘Ferrari Pigment’ and its derivatives have emerged as a major class of organic functional dyes that find varied applications in fields such as industrial pigments, organic solar cells, organic field–effect transistors, and in bioimaging. Since its discovery in 1974 by Farnum and Mehta, DPP-derived dyes gained rapid attention because of its attractive color, synthetic feasibility, ease of functionalization, and tunable optical and electronic properties. The advancement in supramolecular polymerization of DPP-based small molecules and oligomers with directed morphological and electronic features have led to the development of high performing optoelectronic devices. In this review, we highlight the recent developments in the optoelectronic applications of DPP derivatives specifically engineered to form supramolecular polymers.  相似文献   

6.
Thienoisoindigo (TIIG) has emerged as an attractive building block for high‐performance organic optoelectronic devices. Here we report the first synthesis of a series of π‐conjugated TIIG‐based small molecules and alternating copolymers via direct C–H arylation, which enables the efficient synthesis without use of flammable and toxic orgametallic reagents in fewer steps compared Suzuki and Stille coupling. The direct arylation coupling between TIIG and two respective mono‐bromo aryl reactants clearly shows that the α‐H is more reactive than the β‐H in the thiophene unit of TIIG. The high regioselectivity of TIIG monomer warrants the successful synthesis of high‐quality alternating copolymers with minimal structural defects. PTIIG‐BT polymer synthesized via direct arylation polymerization (DAP) showed comparable molecular weight and hole mobility than the same polymer previously synthesized via Suzuki coupling. Moreover, the two new polymers (PTIIG‐TF and PTIIG‐2FBT) synthesized via DAP showed hole mobility up to 10?3 cm2 V?1 s?1 in FET devices fabricated and tested under ambient conditions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2015–2031  相似文献   

7.
1 Introduction Nonlinear optical materials(NLO) have drawn a great intrest of some scholars and scientists in the last dacades because of their tremendous  相似文献   

8.
Covalent organic frameworks (COFs), as a burgeoning class of crystalline porous materials, have made significant progress in their application to optoelectronic devices such as field-effect transistors, memristors, and photodetectors. However, the insoluble features of microcrystalline two-dimensional (2D) COF powders limit development of their thin film devices. Additionally, the exploration of spin transport properties in this category of π-conjugated skeleton materials remains vacant thus far. Herein, an imine-linked 2D Py-Np COF nanocrystalline powder was synthesized by Schiff base condensation of 4,4′,4′′,4′′′-(pyrene-1,3,6,8-tetrayl)tetraaniline and naphthalene-2,6-dicarbaldehyde. Then, we prepared a large-scale free-standing Py-Np COF film via a top-down strategy of chemically assisted acid exfoliation. Moreover, high-quality COF films acted as active layers were transferred onto ferromagnetic La0.67Sr0.33MnO3 (LSMO) electrodes for the first attempt to fabricate organic spin valves (OSVs) based on 2D COF materials. This COF-based OSV device with a configuration of LSMO/Py-Np COF/Co/Au demonstrated a remarkable magnetoresistance (MR) value up to −26.5 % at 30 K. Meanwhile, the MR behavior of the COF-based OSVs exhibited a highly temperature dependence and operational stability. This work highlights the enormous application prospects of 2D COFs in organic spintronics and provides a promising approach for developing electronic and spintronic devices based on acid-exfoliated COF thin films.  相似文献   

9.
何磊  胡斌 《中国科学B辑》2013,(4):375-397
有机自旋光电子学的研究方向分为磁场效应和自旋注入两个方面.研究表明,外加低磁场能够显著改变非磁性有机半导体材料的光致发光、注入电流、电致发光和光电流.这称为有机半导体材料的磁场效应.近年来,非磁性有机半导体材料的磁场效应引起了广泛的关注和研究兴趣.首先,有机半导体材料的磁场效应是强有力的实验手段,用以研究有机电学、光学和光电器件中电荷传输和激发态中的有用和无用过程,为解决电荷传输和激发态过程中的瓶颈问题提供有效的实验手段,为实现磁-光-电多功能集成提供科学原理,尤其是磁场效应能够为提高能量转换效率、探测和传感光电子学器件的响应频谱范围和灵敏度提供新思路.同时利用磁电极,有机半导体材料和器件中自旋注入及其对电荷传输和激发态过程的调控可以用于发展新型功能化的自旋光电子学器件.本文综述并讨论了有机半导体材料和器件中的磁场效应和自旋注入的光电子学效应.  相似文献   

10.
Although organic semiconductors have attracted extensive interest and been utilized to fabricate a variety of optoelectronic devices, their electrical transportation characteristics under high pressure have rarely been investigated. However, the weak intermolecular interaction of organic semiconductors endows them with a pre- ssure-sensitive crystal structure and electrical transportation performance, especially the latter. Herein, a new pre- ssure-sensitive transistor was fabricated from an organic semiconductor 1,1'-dibutyl-4,4'-bipyridinium diiodide. It was found that this transistor exhibited increasing resistance as the pressure gradually increased and that it eventually shut off under a pressure of 288 MPa. Such a characteristic makes this organic semiconductor a potential candidate for the use in the fabrication of pressure-sensitive switches and regulators. In addition, these results shed light on the electrical performance of flexible organic optoelectronic devices working under high pressure levels resulted from the bending force.  相似文献   

11.
The development of blue-emissive ambipolar organic semiconductor is an arduous target due to the large energy gap, but is an indispensable part for electroluminescent device, especially for the transformative display technology of simple-structured organic light-emitting transistor (SS-OLET). Herein, we designed and synthesized two new dibenzothiophene sulfone-based high mobility blue-emissive organic semiconductors (DNaDBSOs), which demonstrate superior optical property with solid-state photoluminescent quantum yield of 46–67 % and typical ambipolar-transporting properties in SS-OLETs with symmetric gold electrodes. Comprehensive experimental and theoretical characterizations reveal the natural of ambipolar property for such blue-emissive DNaDBSOs-based materials is ascribed to a synergistic effect on lowering LUMO level and reduced electron injection barrier induced by the interfacial dipoles effect on gold electrodes due to the incorporation of appropriate DBSO unit. Finally, efficient electroluminescence properties with high-quality blue emission (CIE (0.179, 0.119)) and a narrow full-width at half-maximum of 48 nm are achieved for DNaDBSO-based SS-OLET, showing good spatial control of the recombination zone in conducting channel. This work provides a new avenue for designing ambipolar emissive organic semiconductors by incorporating the synergistic effect of energy level regulation and molecular-metal interaction, which would advance the development of superior optoelectronic materials and their high-density integrated optoelectronic devices and circuits.  相似文献   

12.
This is meant to be a brief overview of the developments of research activities in Japan on organometallic compounds related to their use in electronic and optoelectronic devices. The importance of organometallic compounds in the deposition of metal and semiconductor films for the fabrication of many electronic and opto-electronic devices cannot be exaggerated. Their scope has now extended to thin-film electronic ceramics and high-temperature oxide superconductors. A variety of organometallic compounds have been used as source materials in many types of processing procedures, such as metal–organic chemical vapor deposition (MOCVD), metalorganic vapor-phase epitaxy (MOVPE), metal–organic molecular-beam epitaxy (MOMBE), etc. Deposited materials include silicon, Group III–V and II–VI compound semiconductors, metals, superconducting oxides and other inorganic materials. Organometallic compounds are utilized as such in many electronic and optoelectronic devices; examples are conducting and semiconducting materials, photovoltaic, photochromic, electrochromic and nonlinear optical materials. This review consists of two parts: (I) research related to the fabrication of semiconductor, metal and inorganic materials; and (II) research related to the direct use of organometallic materials and basic fundamental research.  相似文献   

13.
This personal account describes the pursuit of non‐fullerene acceptors designed from simple and accessible organic pi‐conjugated building blocks and assembled through efficient direct (hetero)arylation cross‐coupling protocols. Initial materials development focused on isoindigo and diketopyrrolopyrrole organic dyes flanked by imide‐based terminal acceptors. Efficiencies in solution‐processed organic solar cells were modest but highlighted the potential of the material design. Materials performance was improved through structural engineering to pair perylene diimide with these organic dyes. Optimization of active layer processing and solar cell device fabrication identified the perylene diimide flanked diketopyrrolopyrrole structure as the best framework, with fullerene‐free organic solar cells achieving power conversion efficiencies above 6 %. This material has met our criteria for a simple wide band gap fullerene alternative for pairing with a range of donor polymers.  相似文献   

14.
卟啉类化合物分子光电器件研究进展   总被引:2,自引:1,他引:1  
分子电子器件是未来分子电路的微电子元件,已成为有机功能纳米材料研究的热点。 卟啉类化合物的π共轭体系表现出的独特光电性能和良好的热稳定性,使其作为光电器件、模拟生物酶、分子识别和传感材料在材料化学、医学、生物化学和分析化学等领域展现出良好的应用前景,由于卟啉分子平面结构的易修饰性,常用卟啉化合物组装单元来构建功能化的卟啉光电器件。 本文综述了卟啉类化合物的特点及其在光电器件中的应用进展。  相似文献   

15.
李亮  尹建红  曹珺  杨洲 《化学通报》2011,74(5):402-407
随着科技的进步和时代的发展,光电子技术将是21世纪的核心技术之一.对于光电子技术的发展,非线性光学材料,尤其是非线性光学晶体是不可缺少的关键材料.本文主要从分子设计方面概述了阴阳离子二元生色团体系、纯有机分子、纳米晶体和有机金属复合物等几种主要的非线性光学有机晶体材料的研究情况,并对其各自的特点做了简单的说明.  相似文献   

16.
Dong H  Zhu H  Meng Q  Gong X  Hu W 《Chemical Society reviews》2012,41(5):1754-1808
Organic photoresponse materials and devices are critically important to organic optoelectronics and energy crises. The activities of photoresponse in organic materials can be summarized in three effects, photoconductive, photovoltaic and optical memory effects. Correspondingly, devices based on the three effects can be divided into (i) photoconductive devices such as photodetectors, photoreceptors, photoswitches and phototransistors, (ii) photovoltaic devices such as organic solar cells, and (iii) optical data storage devices. It is expected that this systematic analysis of photoresponse materials and devices could be a guide for the better understanding of structure-property relationships of organic materials and provide key clues for the fabrication of high performance organic optoelectronic devices, the integration of them in circuits and the application of them in renewable green energy strategies (critical review, 452 references).  相似文献   

17.
Organic field-effect transistors are of great importance to electronic devices. With the emergence of various preparation techniques for organic semiconductor materials, the device performance has been improved remarkably. Among all of the organic materials, single crystals are potentially promising for high performances due to high purity and well-ordered molecular arrangement. Based on organic single crystals, alignment and patterning techniques are essential for practical industrial application of electronic devices. In this review, recently developed methods for crystal alignment and patterning are described.  相似文献   

18.
薄膜光电器件的能级结构直接决定了载流子的产生、分离、传输、复合和收集等微观动力学过程,从而决定了器件性能。因此准确获取器件能级结构,是深入理解器件工作机制、推动器件技术革新的重要科学依据。此专论系统地介绍了本课题组利用扫描开尔文探针显微镜(SKPM)表征薄膜光电器件如有机太阳能电池、有机-无机钙钛矿光探测器等器件中界面能级结构的工作。垂直型薄膜器件中的活性材料层被顶电极与底电极封闭,通常难以直接在器件工况下测量其中的界面能级排布,我们发展了横截面SKPM技术来解决这一难题。研究表明,界面层是调控器件能级结构、决定器件极性、提高器件性能的重要手段。本文介绍的表征技术有望在各种薄膜光电器件,诸如光伏器件、光探测器、发光二极管,尤其是各种叠层构型器件的研究中展现出广阔的应用前景。  相似文献   

19.
n-Type conjugated polymers (CPs) are crucial in the applications of organic electronics. Direct coupling of electron-deficient C−H monomer via selective C−H activation, namely C−H/C−H oxidative direct arylation polycondensation (Oxi-DArP), is an ideal approach toward such CPs. Herein, Oxi-DArP is firstly adopted to synthesize a high-performance n-type CP using a newly developed monomer, i.e., 3,6-di(thiazol-5-yl)-diketopyrrolopyrrole (Tz-5-DPP). Tz-5-DPP based homopolymer PTz - 5 - DPP with a molecular weight of 22 kDa has been synthesized via Oxi-DArP. After n-doping, PTz - 5 - DPP films exhibited electric conductivity values up to 8 S cm−1 and power factors (PFs) up to 106 μW m−1 K−2. Notably, this PF value is the highest for n-type polymer thermoelectric materials to date. The Oxi-DArP synthesis and the excellent n-type performance of the polymer make this work an important step toward the straightforward and sustainable preparation of high-performance n-type polymer semiconductors.  相似文献   

20.
杨新国  张登  唐瑞仁  陈宪宏 《有机化学》2009,29(12):1906-1923
由于卟啉与苝酰亚胺基元之间存在高效的能量转移或电子转移过程, 卟啉-苝酰亚胺分子阵列表现出优良的光电性能, 在有机分子器件、有机太阳能电池和光收集材料等高新技术领域展示出广阔的应用前景. 综述了近十几年来卟啉-苝酰亚胺分子阵列的合成及应用研究进展, 并展望了其发展前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号