首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
The spatio-temporal dynamics of small disturbances in viscous supersonic flow over a blunt flat plate at freestream Mach number M=2.5 is numerically simulated using a spectral approximation to the Navier–Stokes equations. The unsteady solutions are computed by imposing weak acoustic waves onto the steady base flow. In addition, the unsteady response of the flow to velocity perturbations introduced by local suction and blowing through a slot in the body surface is investigated. The results indicate distinct disturbance/shock-wave interactions in the subsonic region around the leading edge for both types of forcing. While the disturbance amplitudes on the wall retain a constant level for the acoustic perturbation, those generated by local suction and blowing experience a strong decay downstream of the slot. Furthermore, the results prove the importance of the shock in the distribution of perturbations, which have their origin in the leading-edge region. These disturbance waves may enter the boundary layer further downstream to excite instability modes.  相似文献   

2.
Flow visualization experiments were performed for supersonic and hypersonic nitrogen test gas flows over a cylinder. The results were used to quantify the influence of three-dimensional effects on optical line-of-sight visualization measurements. Images of cylindrical models of varying aspect ratios (length to diameter) were taken. Shock stand-off distance measurements for the models were compared with a two-dimensional approximation and numerical simulations. For aspect ratios of two and above, the two-dimensional approximation was acceptable within experimental uncertainty. The measured shock stand-off decreased by less than 5% from an asymptotic value for an infinite length cylinder. For smaller aspect ratios, a correction factor for the shock stand-off needs to be applied if comparisons between the two-dimensional approximation and experimental measurements are to be drawn. An estimate of this correction factor has been derived from an empirical fit to the available data.   相似文献   

3.
4.
Quasisteady supersonic flow over a flat cone on a plane surface is studied. A formula is derived for the angle through which the flow lines turn at the cone. The results are used to justify the use of two-dimensional simulations of the flow. Peak pressures and total impulses are obtained numerically for various cone angles.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

5.
Spatial mode direct numerical simulation has been applied to study the mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a flat plate with Mach number 4.5. Analysis of the result showed that, during the breakdown process in laminar-turbulent transition, the mechanism causing the mean flow profile to evolve swiftly from laminar to turbulent was that the modification of mean flow profile by the disturbance, when they became larger, leads to remarkable change of its stability characteristics. Though the most unstable T-S wave was of second mode for laminar flow, the first mode waves played the key role in the breakdown process in laminar-turbulent transition.  相似文献   

6.
7.
A scheme is proposed for calculating the intensity of the acoustic wave field generated by diffraction of a beam of acoustic waves on a sharp leading edge of a flat plate in a supersonic flow. This wave field is shown to be a functional of the mass-flow amplitude distribution in the acoustic field at the level of the plate surface upstream of the latter. This distribution can be found on the basis of measurements. The discontinuity of the normal-to-plate component of the velocity perturbation on the plate edge plays an important role in determining mass-flow fluctuations along the plate. At large distances from the leading edge of the plate, where the diffraction wave on the boundary-layer edge degenerates into longitudinal acoustic waves, the amplitude of mass-flow fluctuations decreases with increasing distance from the leading edge and depends on wave orientation.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 2, pp. 64–70, March–April, 2005.  相似文献   

8.
Parameters of a rarefied gas flow through a rack of flat plates aligned across the flow are studied by means of the joint numerical solution of the Boltzmann and Navier-Stokes equations. A subsonic flow regime is considered. The changes in flow characteristics are calculated as functions of the free-stream velocity and plate temperature. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 1, pp. 59–67, January–February, 2008.  相似文献   

9.
A rescaling methodology is developed for high-fidelity, cost-efficient direct numerical simulations (DNS) of flow through porous media, modelled at mesoscopic scale, in a hypersonic freestream. The simulations consider a Mach 5 hypersonic flow over a flat plate with coolant injection from a porous layer with 42 % porosity. The porous layer is designed using a configuration studied in the literature, consisting of a staggered arrangement of cylinder/sphere elements. A characteristic Reynolds number Rec of the flow in a pore cell unit is first used to impose aerodynamic similarity between different porous layers with the same porosity, , but different pore size. A relation between the pressure drop and the Reynolds number is derived to allow a controlled rescaling of the pore size from the realistic micrometre scales to higher and more affordable scales. Results of simulations carried out for higher cylinder diameters, namely 24 μm, 48 μm and 96 μm, demonstrate that an equivalent Darcy-Forchheimer behaviour to the reference experimental microstructure is obtained at the different pore sizes. The approach of a porous layer with staggered spheres is applied to a 3D domain case of porous injection in the Darcy limit over a flat plate, to study the transition mechanism and the associated cooling performance, in comparison with a reference case of slot injection. Results of the direct numerical simulations show that porous injection in an unstable boundary layer leads to a more rapid transition process, compared to slot injection. On the other hand, the mixing of coolant within the boundary layer is enhanced in the porous injection case, both in the immediate outer region of the porous layer and in the turbulent region. This has the beneficial effect of increasing the cooling performance by reducing the temperature near the wall, which provides a higher cooling effectiveness, compared to the slot injection case, even with an earlier transition to turbulence.  相似文献   

10.
G. Simeonides 《Shock Waves》1998,8(3):161-172
A generalized reference enthalpy formulation for the skin friction, heat transfer and radiation-equilibrium temperature distributions over aerodynamic surfaces in attached hypersonic / hyperenthalpic flow is proposed. The formulation, which has been extensively employed in various forms by numerous investigators in the perfect gas regime, has also been recently demonstrated to provide adequate estimates of the heat transfer distribution in thermochemically active high enthalpy flow conditions when coupled to thermochemically active Euler solutions. It is now used to reveal the relevant similitude parameters for viscous effects in hypersonic flow, and the importance of the temperature distribution across the boundary layer and of the temperature-viscosity relation. It is shown that, although reproduction of the flight total flow enthalpy as well as surface temperature is the obvious solution for full viscous simulation in (perfect gas) hypersonic flow, the hot surface testing requirement and, in a number of practical applications, also the hot flow requirement may be relaxed with reasonably small error that can be of the same order as the measurement accuracy in present-day hypersonic testing. This similitude error, however, may increase significantly in cases exhibiting strong viscous/inviscid interaction or when the laminar-turbulent transition process becomes important. In this respect, alternative full simulation solutions, which are less demanding in terms of reproduction of the high levels of flight freestream and surface temperature or even Reynolds number, are discussed. Received 6 May 1997 / Accepted 8 October 1997  相似文献   

11.
The transitional separated–reattached flow on a flat plate with a blunt leading edge under 2% free-stream turbulence (FST) is numerically simulated using the Large-eddy simulation (LES) approach. The Reynolds number based on the free-stream velocity and the plate thickness is 6500. A dynamic subgrid-scale model is employed and the LES results compare well with the available experimental data.It is well known that FST enhances shear-layer entrainment rates, reduces the mean reattachment distance, and causes early transition to turbulence leading to an early breakdown of the separated boundary layer. Many experimental studies have shown that different vortex shedding frequencies exist, specially the so called low-frequency flapping when there is a separation bubble but its mechanism is still not completely understood. The previous study by us without free-stream turbulence (NFST) did not show the existence of such a low-frequency flapping of the shear layer and it is not clear what the effects of FST will have on these shedding modes. Detailed analysis of the LES data has been presented in the present paper and the low-frequency flapping has not been detected in the current study.  相似文献   

12.
The previously demonstrated success of the reference enthalpy concept in heat transfer prediction at hypersonic flow conditions is utilized herein to propose a cost-effective methodology for extrapolation-to-flight of Stanton number measurements (or baseline computational results), and the determination of radiation-equilibrium surface temperatures that develop on actual vehicle surfaces during hypersonic/high enthalpy flight conditions. The methodology couples the (analytical) generalized reference enthalpy solution with Euler computations (providing input data along the edge of thin boundary layers) and is, therefore, significantly cheaper and more efficient than the execution of full Navier–Stokes computations that are presently incorporated, particularly so in the thermo-chemically active high enthalpy flow regime. The validity of the proposed methodology is demonstrated in a first step by means of two-dimensional test cases, whereby extrapolated data accuracy is better than 20%.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号