首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Kono  T. Goto  Y. Ogura  T. Abukawa 《Surface science》1999,420(2-3):200-212
The possibility of surface electromigration (SE) of metals of In, Ga, Sb and Ag on a very flat Si(001)2×1 substrate (single domain 2×1) was examined by SEM, μ-RHEED and μ-AES under UHV conditions. It was found that Ga, Sb and Ag show no SE on Si(001) surface even at DC annealing temperatures for the desorption of these metals. For In on Si(001), a very fast SE (8000 μm/min) towards the cathode side was found that suddenly sets in at 450°C DC annealing, which was related to a surface phase transition. μ-RHEED and μ-AES observation showed that the SE is related to an ordered 4×3-In phase together with two-dimensional In gas phase over the 4×3-In phase and an In-disordered phase at the front end of SE. Single domain 4×3-In phases were found to occur under sequences of In deposition and DC annealing which involve the In SE on Si(001).  相似文献   

2.
C.D. MacPherson  D.Q. Hu  M. Doan  K.T. Leung   《Surface science》1994,310(1-3):231-242
Recently, we reported a thermal desorption study on the evolution of an intense mass 78 profile for the room-temperature exposure of cyclohexene to Si(111)7 × 7 surface, which was believed to give rise to the formation of benzene by a surface dehydrogenation reaction. Because mass 78 was also found to be the base ion in the gas-phase cracking patterns of both 1,3- and 1,4-cyclohexadiene, the dehydrogenation of cyclohexene on clean, sputtered and oxidized Si(111)7 × 7 surfaces has been re-examined in order to determine the origin of the intense mass 78 desorption profile; i.e. whether it was in fact due to the evolution of benzene or cyclohexadiene, or both. Moreover, a similar dehydrogenation reaction giving rise to toluene desorption between 350 and 600 K has been observed for the room-temperature exposure of 1-methyl-1,4-cyclohexadiene to clean and sputtered Si(111)7 × 7 surfaces. The effects of methyl substitution on the reactivity of these cyclic olefins towards Si(111)7 × 7 can be inferred from these studies. Furthermore, the catalytic activity of Si(111)7 × 7 was found to be enhanced significantly by extending the thermal desorption cycles to a higher temperature of 925 K. The dehydrogenation of these olefins on Si(111)7 × 7 also gave rise to a unique 7 × 1 low energy electron diffraction pattern. Possible factors that may play a role in any proposed model for the dehydrogenation reaction are discussed. Finally, evidence of other surface reactions including cyclohexene hydrogénation to cyclohexane will also be presented.  相似文献   

3.
A growth mode and interface structure analysis has been performed for Ag deposited at a high temperature of 300°C on the HF-treated Si(111):H surface by means of medium-energy ion scattering and elastic recoil detection analysis of hydrogen. The measurements show that Ag grows in the Volmer-Weber mode and that the Ag islands on the surface are epitaxial with respect to the substrate. The preferential azimuthal orientation is A-type only when Ag is deposited slowly. The interface does not reconstruct to the √3 × √3-Ag structure, which is normally observed for Ag deposition above 200°C on the Si(111)7 × 7 surface, but retain bulk-like structure. The presence of hydrogen at the interface is demonstrated after deposition of thick (1100 Å) Ag films. However, the amount of hydrogen at the interface is not a full monolayer. This partial desorption of hydrogen from the interface explains why the Schottky barrier heights of Ag/Si(111):H diodes are close to those of Ag/Si(111)7 × 7 and Ag/Si(111)2 × 1.  相似文献   

4.
The spatially inhomogeneous decomposition and desorption reaction of oxide layers with coverage 1-0.3 monolayers (ML) from a silicon (100) surface has been studied using scanning tunneling microscopy (STM). After desorption, microscopic changes to the (2 × 1) reconstruction produce two variations on the dimer row reconstruction with decreased surface atom density. A (2 × n) vacancy chain reconstruction and a c(4 × 4) incomplete row reconstruction were observed; a structure for the latter is proposed. Both reconstructions are metastable, reforming the (2 × 1) reconstruction upon heating. At greater length scales during desorption from an initial 1.0 ML coverage, the mesoscopic changes to the surface structure include pitting and roughening, with up to a measured 20 fold increase in the edge density as compared to the clean Si(100) surface.

These structural changes suggest a reaction mechanism involving a substantial rearrangement of the substrate silicon. From an initial 1.0 ML oxygen coverage, using measured void size distributions at total desorption levels of 13% and below — before voids have begun to coalesce — the evolution of void sizes during initial desorption can be followed. A mechanism for desorption is proposed in which silicon atoms must diffuse from adjacent clean surface area to the oxide boundary, producing a reactive complex from which SiO is desorbed. Void growth rates derived from two rate limiting cases for this desorption reaction mechanism can be compared to measured results. We show that the measured void area evolution is consistent with a reaction mechanism where the rate limiting step for monolayer desorption is the promotion of a silicon atom in a lattice site to a mobile monomer within the void.  相似文献   


5.
Photostimulated desorption experiments have been performed on deuterated methanol adsorbed on Si(111)7 × 7 and Si(100)2 × 1 at the C 1s and O 1s thresholds. D+ and the masses of the series CD+x are produced in the photofragmentation process in both energy ranges. A comparison has been made with the photofragmentation spectra of methanol in the gas phase and two different desorption mechanisms have been hypothesized for the desorption of D+ and higher masses from the silicon surfaces at the C 1s threshold.  相似文献   

6.
The mechanism and energetics are presented of the dimerization of two adsorbed surface SiH2 groups on the H-terminated Si(0 0 1)-(2 × 1) surface to form Si2H4 species during the initial stages of growth in plasma deposition of hydrogenated amorphous silicon (a-Si:H) films. The reactions are observed during classical molecular-dynamics (MD) simulations of a-Si:H film deposition from SiH2 radical precursors impinging on an initially H-terminated Si(0 0 1)-(2 × 1) surface and substrate temperature, T, over the range 500T700 K. The Si2H4 species resulting from the surface SiH2 dimerization reactions undergo surface conformational changes resulting in either a non-rotated (NRD) or a rotated dimer (RD) configuration. The RD configuration is found to be the energetically favorable one. The MD simulation results for the structure of the NRD and RD surface Si2H4 configurations corroborate with ab initio calculations of optimized adsorption configurations of SiH2 radicals on crystalline Si surfaces, as well as results of STM imaging of the thermal decomposition of disilane on Si(0 0 1).  相似文献   

7.
Absolute yields of the metastable excited atoms desorbed from the surfaces of solid Ne and Ar by the creation of surface and bulk excitons have been measured using monochromated synchrotron radiation as a selective excitation source. We have obtained the absolute yields of (2.3 ± 0.7) × 10−3, (1.4 ± 0.4) × 10−3, and (7.8 ± 2.3) × 10−4 atoms/photon at the excitation of S1, B1 and S′ exciton for Ne, respectively, and 1 × 10−5 atoms/photon at S1 excitation for Ar. The probability for metastable atom desorption is found to be about 2 to 10% at the excitation of S1 exciton on the surface of solid Ne.  相似文献   

8.
Excitation with nanosecond-laser pulses at fluences well below the melt threshold removes Si dimers on the Si(001)-(2x1) surface and induces atomic-Si desorption through an electronic mechanism. The rate of this photoinduced reaction depends superlinearly on the excitation intensity, and is enhanced resonantly at the photon energy where the optical transition injects holes into the dimer backbond surface-band state. The results reveal the crucial role of surface holes and their nonlinear localization in the bond rupture of Si dimers on this surface.  相似文献   

9.
We have carried out a comprehensive experimental study of the Si(001) c(4×4) surface reconstruction by scanning tunneling microscopy (STM) (at room temperature and elevated temperatures), Auger electron spectroscopy (AES), reflection high-energy electron diffraction (RHEED) and low-energy electron diffraction (LEED). Si(001) samples were kept under ultra-high vacuum (UHV) at around 550°C until the c(4×4) reconstruction appeared. STM contrast of the c(4×4) reconstruction is strongly influenced by electronic effects and changes considerably over a range of bias voltages.

The c(4×4) surface reconstruction is a result of stress which is caused by incorporation of impurities or adsorbates in sub-surface locations. The resulting c(4×4) reconstruction in the top layer is a pure silicon structure. The main structural element is a one-dimer vacancy (1-DV). At this vacancy, second layer Si-atoms rebond and cause the adjacent top Si-dimers to brighten up in the STM image at low bias voltages. At higher bias voltage the contrast is similar to Si-dimers on the (2×1) reconstructed Si(001). Therefore, besides the 1-DV and the two adjacent Si-dimers, another Si-dimer under tensile stress may complete the 4× unit cell. This is a refinement of the missing dimer model.  相似文献   


10.
The atomic structures of the clean Si(001) and As/Si(001)2 × 1, 1 × 2 reconstructed surfaces prepared in situ have been obtained by grazing incidence X-ray diffraction under ultra high vacuum. In the former case an asymmetric dimer inclined by 7.4° on the surface plane with a slightly contracted dimer bond length (−1.5% compared to the bulk value) has been indentified as the structural basis, whereas a symmetric dimer is found after adsorption of one monolayer of As at 350 ° C. The induced displacements in the first subsurface silicon layer have been derived in both cases. These results are compatible with the models proposed on the basis of spectroscopic and direct imaging methods.  相似文献   

11.
The role of kinetics in the superstructure formation of the Sb/Si(0 0 1) system is studied using in situ surface sensitive techniques such as low energy electron diffraction, Auger electron spectroscopy and electron energy loss spectroscopy. Sb adsorbs epitaxially at room-temperature on a double-domain (DD) 2 × 1 reconstructed Si(0 0 1) surface at a flux rate of 0.06 ML/min. During desorption, multilayer Sb agglomerates on a stable Sb monolayer (ML) in a DD (2 × 1) phase before desorbing. The stable monolayer desorbs in the 600–850 °C temperature range, yielding DD (2 × 1), (8 × 4), c(4 × 4), DD (2 × 1) phases before retrieving the clean Si(0 0 1)-DD (2 × 1) surface. The stable 0.6-ML (8 × 4) phase here is a precursor phase to the recently reported 0.25-ML c(4 × 4) surface phase, and is reported for the first time.  相似文献   

12.
Microscopic models to describe adsorbate dynamics induced by STM, e.g. the dynamics of STM-induced desorption of CO from Cu(111) and the dynamics of STM-induced rotation of acetylene on Cu(100) are presented. In these models, the relation between the change of the electronic state caused by an electron tunneling from an STM tip and the transition of the vibrational state for the molecular/intramolecular motion is taken into account from a microscopic point of view. Calculated probabilities for inducing desorption and rotation in these models agree with recent experimental results.  相似文献   

13.
K. W. Self  C. Yan  W. H. Weinberg   《Surface science》1997,380(2-3):408-416
Scanning tunneling microscopy and temperature-programmed desorption have been used to investigate the chemistry of water on Si(111)-(7 × 7) substrates which were misoriented 2° toward the [ 10] direction. Upon room temperature exposure to water, the adatoms of the (7 × 7) unit cell are still evident even after high exposures, implying that major modifications of the substrate do not occur. At high coverages, the distribution of reacted adatoms shifts from one controlled by dissociative adsorption across the adatom-rest atom pair to a statistical distribution based on the availability of dangling bonds. Desorption of the oxide layer which remains after water adsorption and the desorption of hydrogen have also been characterized. The oxide desorption occurs along well-defined wavefronts which originate at step edges and advance in directions consistent with the underlying substrate symmetry, primarily the [ 2] direction (i.e. the wave vector points in the [ 2] direction). In regions of the surface where the oxide has desorbed, the (7 × 7) unit cell can be seen clearly. Vacancies resulting from the loss of surface silicon atoms (via the etching) coalesce into islands in the clean regions of the terraces, but unlike desorption of oxide layers from Si(100), the desorption does not occur from the boundaries of these vacancy islands.  相似文献   

14.
Sukmin Jeong   《Surface science》2003,530(3):155-160
Using a first-principles method, we investigate the adsorption and diffusion of a Si adatom on the H-terminated Si(1 1 1) substrate, which would be useful in understanding the initial stages of Si homoepitaxy using a H surfactant. The adatom substitutes H atom(s) to form a monohydride structure or a dihydride structure. In forming the monohydride structure, the energy barrier for H substitution is absent. The adatom migrates on the surface with alternating its chemical state between monohydride and dihydride. These behaviors of the adatom are quite similar to those on the H/Si(0 0 1)2 × 1 surface, despite the significant difference in the substrate structure between both orientations. The resulting diffusion barrier is 1.30 eV, which is also comparable to that on the H/Si(0 0 1)2 × 1 surface.  相似文献   

15.
PbI2 has been adsorbed on the clean InSb(001)-(4 × 1) reconstructed surface and on the InSb(001)-(1 × 3)-Pb lead covered reconstructed surface. On the clean surface epitaxial growth occurred with the unit mesh of the layered PbI2 aligning exactly with both the substrate [110] and [1 0] directions. On desorption a reaction occurred between the last layer of PbI2, and the substrate, forming a series of structures which finished with a well-formed (1 × 3)-Pb structure in which the surface is depleted/enriched in In/Sb compared to the clean (4 × 1). The Pb in this structure is thought to partially replace surface In. Epitaxial adsorption also occurred on the (1 × 3)-Pb surface generating a single, well-formed structure with the hexagonal net of the PbI2 aligned with just the [1 0] substrate direction. The structures and reactions are discussed and a row matching model is proposed to explain the single epitaxial orientation of PbI2 on the (1 × 3)-Pb surface.  相似文献   

16.
H. Yang  E. F. Greene   《Surface science》1999,440(3):327-339
Changes which occur on, and just below, the surface of a Si(111)-(7×7) crystal when it is dosed with H atoms are complex and still not well described. Measurements of He atom diffraction (HAS) from this surface in the [ 2 ] or [ 11] directions give scans which are asymmetric about the specular angle. The scans become symmetric when the surface is exposed to doses of H atoms sufficient to give coverages of 0.1 to 14 ML, if the atoms all stick. This means that the 3-fold rotational symmetry of the clean surface becomes 6-fold after the addition of the H atoms and shows that the faulted and unfaulted regions of the DAS model become equivalent as they are averaged by the He beam, although the large 49-atom unit cell remains. Thus this surface is not Si(111)-H(1×1), the equilibrated product of H-atom addition which is about 0.3 eV lower in energy, but a metastable intermediate state(s).

Comparison of results from HAS with those from other techniques, such as scanning tunneling microscopy, help to characterize this surface.  相似文献   


17.
The adsorption of oxygen on the carbon-covered W(001) surface was studied by AES and low energy ion scattering. At low carbon and oxygen coverages, both species can be accommodated on the surface. At higher coverages, the oxygen displaces the carbon into the near-surface (selvedge) region. When oxygen is adsorbed on the W(001)-p(5 × 1)C surface (formed by exposure to more than 50 L of ethylene at 1500 K), carbon is displaced in a nearly one for one manner. Annealing the oxygen-covered p(5 × 1)C surface to 950 K removes up to 0.5 ML oxygen as CO. Interestingly, the surface carbon coverage is unchanged by CO desorption at 950 K and subsurface carbon is partially replenished by diffusion from the bulk. Oxygen adsorption in excess of 0.5 ML suppresses carbon segregation from the bulk at 950 K. The additional oxygen does not desorb until 1300 K. Surface carbon is restored by annealing to 1500 K.. The degree and rate of carbon segregation depend on the initial ethylene exposure even though the resulting W(001)-p(5 × 1)C surfaces are identical according to AES, LEED, and ion scattering.  相似文献   

18.
Filled and empty state scanning tunnelling microscopy images of the sputtered and annealed InSb(001) surface are presented. The sputter-anneal preparation generates a surface with two distinct phases. The dominant phase possesses a unit cell with true c(8 × 2) symmetry, whereas the other phase is attributed to an asymmetric 1 × 3 reconstruction. The presence of a c(8 × 2) unit cell in filled state images is in contrast to previous reports, which identified only a 4 × 1 unit cell. The true c(8 × 2) symmetry further indicates, the available structural model is used as a guide, that the current interpretation of features in filled state images is incorrect. This result may necessitate a reevaluation of the structural model for the InSb(001)-c(8 × 2) surface.  相似文献   

19.
D2 temperature-programmed desorption (TPD) was used to probe the structure of the Si(011)-(16 × 2) surface. Deuterium was adsorbed at 200°C to coverages θD ranging up to complete saturation (approximately 1.1 ML) and the sample heated at 5°C s−1. TPD spectra exhibited three second-order desorption peaks labelled β2, β*1 and β1 centered at 430, 520 and 550°C. Of the proposed models for the Si(011)-(16 × 2) reconstruction, the present TPD results as a function of θD provide support for the adatom/dimer model with the β2 peak assigned to D2 desorption from the dihydride phase, while the β*1 and β1 peaks arise from adatom and surface-atom monohydride phases.  相似文献   

20.
The transition between the arsenic saturated c(4 × 4) and the As stabilised 2 × 4 reconstructed GaAs(001) surfaces has been followed in situ on a UHV grazing incidence X-ray diffractometer stage. X-ray diffraction lines specific of either structure have been recorded as a function of temperature. The intensity and lineshape evolution has enabled to propose a model for the transformation involving a homogeneous disordering of the c(4 × 4) surface through random As desorption followed by nucleation and growth of 2 × 4 domains. Under UHV conditions, the irreversible transition is observed over a temperature interval ranging from 330°C to 380°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号