首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Natural-chlorophyll-related porphyrins, including (2H, Zn, Cu)-protoporphyrin IX (Por-1) and Zn-mesoporphyrin IX (Por-2), and chlorins, including chlorin e? (Chl-1), chlorin e? (Chl-2), and rhodin G? (Chl-3), have been used in dye-sensitized solar cells (DSSCs). For porphyrin sensitizers that have vinyl groups at the β-positions, zinc coordinated Por-1 gives the highest solar-energy-to-electricity conversion efficiency (h) of up to 2.9%. Replacing the vinyl groups of ZnPor-1 with ethyl groups increases the open-circuit voltage (V(oc)) from 0.61 V to 0.66 V, but decreases the short-circuit current (J(sc)) from 7.0 mA·cm?2 to 6.1 mA·cm?2 and the value of h to 2.8%. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations suggest that the higher J(sc) values of Zn-based porphyrin sensitizers result from the favorable electron injection from the LUMO at higher energy levels. In the case of the chlorin sensitizers, the number of carboxyl protons has a large effect on the photovoltaic performance. Chl-2 with two carboxyl protons gives much higher values of J(sc), V(oc), and h than does Chl-1 with three carboxyl protons. Replacing the protons of Chl-1 with sodium ions can substantially improve the photovoltaic performance of Chl-1-based solar cells. Furthermore, the sodium salt of Chl-3 with an aldehyde group at the C7 position shows poorer photovoltaic performance than does the sodium salt of Chl-1 with methyl groups at the C7 position. This is due to the low light-harvesting capability of Chl-3.  相似文献   

2.
Dicarboxyterpyridine chelates with π-conjugated pendant groups attached at the 5- or 6-position of the terminal pyridyl unit were synthesized. Together with 2,6-bis(5-pyrazolyl)pyridine, these were used successfully to prepare a series of novel heteroleptic, bis-tridentate Ru(II) sensitizers, denoted as TF-11-14. These dyes show excellent performance in dye-sensitized solar cells (DSCs) under AM1.5G simulated sunlight at a light intensity of 100 mW cm(-2) in comparison with a reference device containing [Ru(Htctpy)(NCS)(3)][TBA](3) (N749), where H(3)tctpy and TBA are 4,4',4"-tricarboxy-2,2':6',2"-terpyridine and tetra-n-butylammonium cation, respectively. In particular, the sensitizer TF-12 gave a short-circuit photocurrent of 19.0 mA cm(-2), an open-circuit voltage (V(OC)) of 0.71 V, and a fill factor of 0.68, affording an overall conversion efficiency of 9.21%. The increased conjugation conferred to the TF dyes by the addition of the π-conjugated pendant groups increases both their light-harvesting and photovoltaic energy conversion capability in comparison with N749. Detailed recombination processes in these devices were probed by various spectroscopic and dynamics measurements, and a clear correlation between the device V(OC) and the cell electron lifetime was established. In agreement with several other recent studies, the results demonstrate that high efficiencies can also be achieved with Ru(II) sensitizers that do not contain thiocyanate ancillaries. This bis-tridentate, dual-carboxy anchor configuration thus serves as a prototype for future omnibearing design of highly efficient Ru(II) sensitizers suited for use in DSCs.  相似文献   

3.
Four organic D-A-π-A-featured sensitizers (TQ1, TQ2, IQ1, and IQ2) have been studied for high-efficiency dye-sensitized solar cells (DSSCs). We employed an indoline or a triphenylamine unit as the donor, cyanoacetic acid as the acceptor/anchor, and a thiophene moiety as the conjugation bridge. Additionally, an electron-withdrawing quinoxaline unit was incorporated between the donor and the π-conjugation unit. These sensitizers show an additional absorption band covering the broad visible range in solution. The contribution from the incorporated quinoxaline was investigated theoretically by using DFT and time-dependent DFT. The incorporated low-band-gap quinoxaline unit as an auxiliary acceptor has several merits, such as decreasing the band gap, optimizing the energy levels, and realizing a facile structural modification on several positions in the quinoxaline unit. As demonstrated, the observed additional absorption band is favorable to the photon-to-electron conversion because it corresponds to the efficient electron transitions to the LUMO orbital. Electrochemical impedance spectroscopy (EIS) Bode plots reveal that the replacement of a methoxy group with an octyloxy group can increase the injection electron lifetime by a factor of 2.4. IQ2 and TQ2 can perform well without any co-adsorbent, successfully suppress the charge recombination from TiO(2) conduction band to I(3)(-) in the electrolyte, and enhance the electron lifetime, resulting in a decreased dark current and enhanced open circuit voltage (V(oc)) values. By using a liquid electrolyte, DSSCs based on dye IQ2 exhibited a broad incident photon-to-current conversion efficiency (IPCE) action spectrum and high efficiency (η=8.50?%) with a short circuit current density (J(sc)) of 15.65?mA?cm(-2), a V(oc) value of 776?mV, a fill factor (FF) of 0.70 under AM 1.5 illumination (100?mW?cm(-2)). Moreover, the overall efficiency remained at 97% of the initial value after 1000?h of visible-light soaking.  相似文献   

4.
Novel indoline dyes, I-1-I-4, with structural modification of π-linker group in the D-π-A system have been synthesized and fully characterized. Molecular engineering through expanding the π-linker segment has been performed. The ground and excited state properties of the dyes have been studied by means of density functional theory (DFT) and time-dependent DFT (TD-DFT). Larger π-conjugation linkers would lead to broader spectral response and higher molar extinction coefficient but would decrease dye-loaded amount on TiO(2) electrode and LUMO level. While applied in DSSCs, the variation trends in short-circuit current density (J(sc)) and open-circuit voltage (V(oc)) were observed to be opposite to each other. The internal reasons were studied by experimental data and theoretical calculations in detail. Notably, I-2 showed comparable photocurrent values with liquid and quasi-solid state electrolyte, which suggested through molecular engineering of organic sensitizers the dilemma between optical absorption and charge diffusion lengths can be balanced well. Through studies of photophysical, electrochemical, and theoretical calculation results, the internal relations between chemical structure and efficiency have been revealed, which serve to enhance our knowledge regarding design and optimization of new sensitizers for quasi-solid state DSSCs, providing a powerful strategy for prediction of photovoltaic performances.  相似文献   

5.
Fused-acenes are important building blocks for D-p-A sensitizers. The small change in substituted heteroatoms influence the behavior of the sensitizers dramatically.  相似文献   

6.
A series of novel sensitizers were successfully synthesized utilizing azobenzene as a π‐linkage unit for the D–π–A structure. A slight red shift on the absorption spectra and λonset of the sensitizers could be observed when the thienyl group was introduced to the acceptor moiety (A). In addition, replacing the donor moiety (D) from carbazole to diarylamino could lead to a negative shift (approximately 0.3 V) in the first oxidation potential. DFT calculation was also carried out and the trend of calculated HOMO–LUMO gaps was consistent to the experimental data obtained from the CV results ( DT1 < DT2 < DT3 < DT4 ). These sensitizers were then employed in dye‐sensitized solar cells to investigate their photovoltaic performances. Highest power conversion efficiency (PCE) of 0.84% was achieved for DT1 ‐based DSSC according to its most bathochromic absorption spectrum.  相似文献   

7.
We report the synthesis and physical characterization of a series of peripherally functionalized porphyrazines (pzs) of the forms H2[pz(A;B3)] and trans-H2[pz(A2);B2], where A is a dithiolene chelate of molybdocene or vanadocene and B is a solublizing group. The precursor pz's 8 and 9, of the form H2[pz(A;B3)], where A = (4-(butyloxycarbonyl)-S-benzyl)2 and B = di-tert-butylphenyl (8) or di-n-propyl (9), have been prepared, deprotected, and peripherally metalated with molybdocene and vanadocene to form 1(Mo(IV)) and 1(V(IV)), prepared from 8, and 2(Mo(IV)) from 9, respectively. Likewise, the protected trans-H2[pz(A2);B2)], where A = (S-benzyl)2 and B = 3,6-butyloxybenzene (12) or A = (S-benzyl)2 and B = (tert-butylphenyl)2 (13), have been prepared and peripherally metalated with molybdocene and vanadocene to give the trans dinuclear complexes, 3(Mo(IV),Mo(IV)), 3(V(IV),V(IV)) (from 12), and 4(V(IV),V(IV)) (from 13). A crystal structure of the trans vanadocene pz 4(V(IV),V(IV)) is presented; the distance between the two vanadium atoms is 14.5 A. The molybdocene-appended pz's are highly redox active and exhibit cyclic voltammograms that are more than just the sum of the metallocene and the parent pz's. Chemical oxidation with FcPF6 gives the Mo(V) species 1(Mo(V)), 2(Mo(V)), 3(Mo(V),Mo(IV)), and 3(Mo(V),Mo(V)). Their EPR spectra are indicative of extensive delocalization from the Mo(V) into the dithiolato-pz. The EPR spectrum of the mononuclear paramagnetic vanadocene pz, 1(V(IV)), shows an expected 8-line pattern for an S = 2 system with hyperfine coupling to a single 51V (I = 7/2) nucleus, but the dinuclear vanadocene pz's, 3(V(IV),V(IV)) and 4(V(IV),V(IV)), exhibit a striking 15-line pattern of the same breadth from the S = 1 state formed by exchange coupling between the S = 2 vanadium centers of a dinuclear complex. Thus, the porphyrazine macrocycle is capable of mediating magnetic exchange interactions between metal ions bound to the periphery, separated by 14.5 A.  相似文献   

8.
We designed highly efficient porphyrin sensitizers with two phenyl groups at meso-positions of the macrocycle bearing two ortho-substituted long alkoxyl chains for dye-sensitized solar cells; the ortho-substituted devices exhibit significantly enhanced photovoltaic performances with the best porphyrin, LD14, showing J(SC) = 19.167 mA cm(-2), V(OC) = 0.736 V, FF = 0.711, and overall power conversion efficiency η = 10.17%.  相似文献   

9.
A series of new push-pull organic dyes (BT-I-VI), incorporating electron-withdrawing bithiazole with a thiophene, furan, benzene, or cyano moiety, as π?spacer have been synthesized, characterized, and used as the sensitizers for dye-sensitized solar cells (DSSCs). In comparison with the model compound T1, these dyes containing a thiophene moiety between triphenylamine and bithiazole display enhanced spectral responses in the red portion of the solar spectrum. Electrochemical measurement data indicate that the HOMO and LUMO energy levels can be tuned by introducing different π?spacers between the bithiazole moiety and cyanoacrylic acid acceptor. The incorporation of bithiazole substituted with two hexyl groups is highly beneficial to prevent close π-π aggregation, thus favorably suppressing charge recombination and intermolecular interaction. The overall conversion efficiencies of DSSCs based on bithiazole dyes are in the range of 3.58 to 7.51?%, in which BT-I-based DSSCs showed the best photovoltaic performance: a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 81.1?%, a short-circuit photocurrent density (J(sc)) of 15.69?mA?cm(-2), an open-circuit photovoltage (V(oc)) of 778?mV, and a fill factor (ff) of 0.61, which correspond to an overall conversion efficiency of 7.51?% under standard global AM 1.5 solar light conditions. Most importantly, long-term stability of the BT-I-III-based DSSCs with ionic-liquid electrolytes under 1000?h of light soaking was demonstrated and BT-II with a furan moiety exhibited better photovoltaic performance of up to 5.75?% power conversion efficiency.  相似文献   

10.
Four tripodal sensitizers, Ru(bpy)(2)(Ad-tripod-phen)(2+) (1), Ru(bpy)(2)(Ad-tripod-bpy)(2+) (2), Ru(bpy)(2)(C-tripod-phen)(2+) (3), and Ru(bpy)(2)(C-tripod-bpy)(2+) (4) (where bpy is 2,2'-bipyridine, phen is 1,10-phenanthroline, and Ad-tripod-bpy (phen) and C-tripod-bpy (phen) are tripod-shaped bpy (phen) ligands based on 1,3,5,7-tetraphenyladamantane and tetraphenylmethane, respectively), have been synthesized and characterized. The tripodal sensitizers consist of a rigid-rod arm linked to a Ru(II)-polypyridine complex at one end and three COOR groups on the other end that bind to metal oxide nanoparticle surfaces. The excited-state and redox properties of solvated and surface-bound 1-4 have been studied at room temperature. The absorption spectra, emission spectra, and electrochemical properties of 1-4 in acetonitrile solution are preserved when 1-4 are bound to nanocrystalline (anatase) TiO(2) or colloidal ZrO(2) mesoporous films. This behavior is indicative of weak electronic coupling between TiO(2) and the sensitizer. The kinetics for excited-state decay are exponential for 1-4 in solution and are nonexponential when 1-4 are bound to ZrO(2) or TiO(2). Efficient and rapid (k(cs) > 10(8) s(-)(1)) excited-state electron injection is observed for 1-4/TiO(2). The recombination of the injected electron with the oxidized Ru(III) center is well described by a second-order kinetic model with rate constants that are independent of the sensitizer. The sensitizers bound to TiO(2) were reversibly oxidized electrochemically with an apparent diffusion coefficient approximately 1 x 10(-11) cm(2) s(-)(1).  相似文献   

11.
A set of two donor-acceptor type conjugated polymers with carboxylic acid side groups have been synthesized and utilized as active materials for dye-sensitized solar cells (DSSCs). The polymers feature a π-conjugated backbone consisting of an electron-poor 2,1,3-benzothiadiazole (BTD, acceptor) unit, alternating with either a thiophene-fluorene-thiophene triad (2a) or a terthiophene (3a) segment as the donor. The donor-acceptor polymers absorb broadly throughout the visible region, with terthiophene-BTD polymer 3a exhibiting an absorption onset at approximately 625 nm corresponding to a ~1.9 eV bandgap. The polymers adsorb onto the surface of nanostructured TiO(2) due to interaction of the polar carboxylic acid units with the metal oxide surface. The resulting films absorb visible light strongly, and their spectra approximately mirror the polymers' solution absorption. Interestingly, a series of samples of 3a with different molecular weight (M(n)) adsorb to TiO(2) to an extent that varies inversely with M(n). DSSCs that utilize the donor-acceptor polymers as sensitizers were tested using an I(-)/I(3)(-) electrolyte. Importantly, for the set of polymer sensitizers 3a with varying M(n), the DSSC efficiency varies inversely with M(n), a result that reflects the difference in adsorption efficiency observed in the film absorption experiments. The best DSSC cell tested is based on a sample of 3a with M(n) ~ 4000, and it exhibits a ~65% peak IPCE with J(sc) ~12.6 mA cm(-2) under AM1.5 illumination and an overall power conversion efficiency of ~3%.  相似文献   

12.
A series of new dicationic sensitizers that are hybrids of pyrylium salts and viologens has been synthesized. The electrochemical and photophysical properties of these “pyrylogen” sensitizers are reported in sufficient detail to allow rationale design of new photoinduced electron transfer reactions. The range of their reduction potentials (+0.37–+0.05 V vs SCE) coupled with their range of singlet (48–63 kcal mol?1) and triplet (48–57 kcal mol?1) energies demonstrate that they are potent oxidizing agents in both their singlet and triplet excited states, thermodynamically capable of oxidizing substrates with oxidation potentials as high as 3.1 eV. The pyrylogens are synthesized in three steps from readily available starting materials in modest overall 11.4–22.3% yields. These sensitizers have the added advantages that: (1) their radical cations do not react on the CV timescale with oxygen bypassing the need to run reactions under nitrogen or argon and (2) have long wavelength absorptions between 413 and 523 nm well out of the range where competitive absorbance by most substrates would cause a problem. These new sensitizers do react with water requiring special precautions to operate in a dry reaction environment.  相似文献   

13.
Pressure effects on enantiodifferentiating geometrical photoisomerizations of (Z)-cyclooctene and (Z,Z)-cycloocta-1,5-diene sensitized by chiral benzene-1,2,4,5-tetracarboxylate were investigated over a pressure range of 0.1-750 MPa. Enantiomeric excesses (ee's) of the (E)- and (E.Z)-isomers obtained displayed discontinuous pressure dependencies, affording distinctly different differential activation volumes (delta delta V++) for each range, indicating alteration of the enantiodifferentiation mechanism. The switching of delta delta V++ occurred at essentially the same pressures of 200 and 400 MPa, which are shared by all the chiral sensitizers, irrespective of the chiral auxiliary employed. Circular dichroism spectral examinations at pressures of up to 400 MPa also revealed that the chiral sensitizers undergo discontinuous conformational changes at 200 MPa, which most likely lead to switching of the enantiodifferentiating sensitization mechanism in the exciplex intermediate.  相似文献   

14.
The first example of a heteroarylvinylene π-conjugated quaterpyridine Ru(II) sensitizer (N1044) was synthesized and used in dye-sensitized solar cells; the dye has an effective panchromatic absorption band, covering the entire visible spectrum up to the NIR region, and superior electrochemical characteristics (HOMO/LUMO and bandgap energies) with respect to previous representative Ru(II) bi- and quaterpyridine sensitizers. A record IPCE curve ranging from 360 to 920 nm has been measured with a maximum of 65% at 646 nm and still 33% efficiency at 800 nm; this leads to substantially increased photocurrent (19.2 mA cm(-2)) when compared to the prototype N719 Ru(II) sensitizer.  相似文献   

15.
A pulsing electric signal (pulse width 10 s) was applied to a single cell of cultured tobacco, line BY-2, by inserting a multifunctional microelectrode (MME) into the cell. The electric voltage (V(ET)) was loaded between the electrode terminals of the MME and the reference electrode situated in the extracellular medium. Since the electrical impedance of the MME was as large as that of the cell membrane, the effective potential acting across the cell membrane (V(CMP)) should be only some portion of V(ET). The MME enabled simultaneous measurement of V(ET) and V(CMP). When V(ET) was varied from 0 to -1 V, V(CMP) changed linearly in proportion to V(ET). When V(ET) variation range was enlarged (from 0 to -2 V), V(CMP) changing pattern became a declined curve. When V(ET) variation range was further enlarged (from 0 to -5 V), the V(CMP) changing pattern showed a saturation curve. Under this condition, the cell division potentiality decreased accordingly. Based on these results, the feasibility of V(CMP) as an indicator of the effective intensity of an electric stress signal is discussed. In the present case of a BY-2 cell, a proper intensity of V(CMP) that could cause an appreciable stress and not a lethal signal was estimated as -250 mV.  相似文献   

16.
Four new type II organic dyes with D‐π‐A structure (donor‐π‐conjugated‐acceptor) and two typical type II sensitizers based on catechol as reference dyes are synthesized and applied in dye sensitized solar cells (DSCs). The four dyes can be adsorbed on TiO2 through hydroxyl group directly. Electron injection can occur not only through the anchoring group (hydroxyl group) but also through the electron‐withdrawing group (? CN) located close to the semiconductor surface. Experimental results show that the type II sensitizers with a D‐π‐A system obviously outperform the typical type II sensitizers providing much higher conversion efficiency due to the strong electronic push‐pull effect. Among these dyes, LS223 gives the best solar energy conversion efficiency of 3.6%, with Jsc=7.3 mA·cm?2, Voc=0.69 V, FF=0.71, the maximum IPCE value reaches 74.9%.  相似文献   

17.
The diiron hydride [(μ-H)Fe(2)(pdt)(CO)(4)(dppv)](+) ([H2](+), dppv = cis-1,2-C(2)H(2)(PPh(2))(2)) is shown to be an effective photocatalyst for the H(2) evolution reaction (HER). These experiments establish the role of hydrides in photocatalysis by biomimetic diiron complexes. Trends in redox potentials suggests that other unsymmetrically substituted diiron hydrides are promising catalysts. Unlike previous catalysts for photo-HER, [H2](+) functions without sensitizers: irradiation of [H2](+) in the presence of triflic acid (HOTf) efficiently affords H(2). Instead of sacrificial electron donors, ferrocenes can be used as recyclable electron donors for the photocatalyzed HER, resulting in 4 turnovers.  相似文献   

18.
Yang W  Lu C  Zhang Q  Chen S  Zhan X  Liu J 《Inorganic chemistry》2003,42(22):7309-7314
The hydrothermal reaction of NaVO(3).H(2)O, barbituric acid, NH(2)NH(2).2HCl, H(3)PO(4), and H(2)O gave a novel heteropolyoxovanadate Na(6)[(P(V)O(4))V(V)(6)V(IV)(12)O(39)](2).H(3)PO(4).31H(2)O (1) and an unexpected phase Na(2)[C(12)H(6)N(6)O(9)].7H(2)O (2). The basic building blocks in 1 are the six-capped sphere-shaped heteropoly anion [(P(V)O(4))V(V)(6)V(IV)(12)O(39)](3-) with framework similar to that of the reported polyoxovanadates possessing [V(18)O(42)] clusters encapsulating VO(4) or other ions. These heterpoly anionic units are linked via V[bond]O[bond]V bridges into an interesting 3D straight-channel structure. The structure of 2 consists of novel organic anions ([C(12)H(6)N(6)O(9)](2-), 5,5-bis(2',4',6'-trioxopyrimidyl)barbital, representing the first oxidized barbituric acid trimer) linked via sodium ions into 1D hollow tubes with diameter of 4.49 x 6.86 A and further connected into a three-dimensional framework via hydrogen bonds.  相似文献   

19.
This work presents an electrochemical scanning tunneling microscopy study of Sb irreversibly adsorbed on Pt(111) at various potentials. At an open circuit potential (0.46 V vs a Ag/AgCl electrode), well-ordered structures of SbO+ were found: four (4 x 3)-3SbO+ structures and one (2 square root(3) x 2 square root(3))R30 degrees-3SbO+ structure. In addition, several unidentifiable transient structures of SbO+ were observed, and their relations to the well-ordered structures of (4 x 3) and (2 square root(3) x 2 square root(3))R30 degrees, regarding structural evolution, were proposed. At a reducing potential (0 V), the Pt(111) surface was covered with irreversibly adsorbed Sb which consisted of three different domains: protruded domain, domain of uniaxially incommensurate (square root(3) x square root(2))-Sb, and domain of bare (1 x 1) Pt(111). During oxidation of elemental Sb at 0.30 V, the Sb domains of the (square root(3) x square root(2)) structure were oxidized, while the protruded domains were not oxidized. After underpotential deposition of additional Sb onto the Pt(111) covered with irreversibly adsorbed Sb, the whole surface was filled with the Sb domains where each Sb atoms were separated by the square root(2a) distance (a = one Pt-Pt distance, 0.277 nm). The observed electrochemical inactivity below 0.3 V was discussed in terms of the protruded domain of a presumable incommensurate (square root(2) x square root(2)) structure.  相似文献   

20.
Novel unsymmetrical organic sensitizers comprising donor, electron-conducting, and anchoring groups were engineered at a molecular level and synthesized for sensitization of mesoscopic titanium dioxide injection solar cells. The unsymmetrical organic sensitizers 3-(5-(4-(diphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D5), 3-(5-bis(4-(diphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D7), 5-(4-(bis(4-methoxyphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D9), and 3-(5-bis(4,4'-dimethoxydiphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D11) anchored onto TiO2 and were tested in dye-sensitized solar cell with a volatile electrolyte. The monochromatic incident photon-to-current conversion efficiency of these sensitizers is above 80%, and D11-sensitized solar cells yield a short-circuit photocurrent density of 13.90 +/- 0.2 mA/cm(2), an open-circuit voltage of 740 +/- 10 mV, and a fill factor of 0.70 +/- 0.02, corresponding to an overall conversion efficiency of 7.20% under standard AM 1.5 sun light. Detailed investigations of these sensitizers reveal that the long electron lifetime is responsible for differences in observed open-circuit potential of the cell. As an alternative to liquid electrolyte cells, a solid-state organic hole transporter is used in combination with the D9 sensitizer, which exhibited an efficiency of 3.25%. Density functional theory/time-dependent density functional theory calculations have been employed to gain insight into the electronic structure and excited states of the investigated species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号