首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of 1,4-diphenylbutadiyne and 1,7-octadiyne with Ru(RL1)(PPh3)2(CO)Cl (1) has respectively generated the inserted product [Ru(RL2XY)(PPh3)2(CO)Cl] (X=Ph, Y=-C≡C-Ph), (2) and [Ru(RL2Z)- (PPh3)2(CO)Cl]2(CH2)4 (Z=H), (3) in excellent yield (RL1 is C6H2O-2-CHNHC6H4R(p)-3-Me-5, RL2 is C6H2(C=C-1)-O-2-CHNHC6H4R(p)-3-Me-5 and R is Me, OMe or Cl). In the conversions (1) (2)/(3) the Ru(C,O) chelate ring expands from four-membered to six-membered, and the structure determination of [2(Cl) · H2O] authenticates the insertion process. The (σ-styryl)phenolato chelate ring, along with the benzene ring and the aldimine function (C6H4Cl and Me excluded), constitutes a good plane (mean deviation, 0.06 Å). The aryl rings at C9 and N1 make dihedral angles of 77° and 27° respectively with the above plane. Characteristic spectral data (u.v.–vis, i.r. and 1H-n.m.r.) of the complexes are reported. A notable feature is that an allowed band appears near 620 nm due to the t (azomethine) charge transfer transition which is diagnostic of the coordinated iminium-phenolato function present in (2) and (3). In 1H-n.m.r. the N+–H signals in (2) and (3) (near 12.5 ppm) are split into a doublet due to trans coupling with the azomethine proton. The C=N stretching frequency is relatively high (near 1630 cm−1) and this is consistent with the protonation of nitrogen. In CH2Cl2 solution (2) and (3) display one and two quasireversible RuIII/RuII cyclic voltammetric responses with E1/2 near 0.4 V and 0.4 V, 0.7 V versus s.c.e. due to the presence of one and two RuII centers, respectively. The conversions (1)(2)/(3) are accompanied by the cleavage of the Ru-O bond by MeOH. Then alkyne π-anchoring and activation is believed to occur via displacement of MeOH. Subsequent (2+2) addition between Ru-C and C=C(alkyne), and regeneration of the Ru-O(phenolato) bond, completes the two carbon metallacycle expansions, furnishing (2) and (3).  相似文献   

2.
A series of ruthenium alkenylacetylide complexes trans-[Ru{C≡CC(=CH2)R}Cl(dppe)2] (R=Ph ( 1 a ), cC4H3S ( 1 b ), 4-MeS-C6H4 ( 1 c ), 3,3-dimethyl-2,3-dihydrobenzo[b]thiophene (DMBT) ( 1 d )) or trans-[Ru{C≡C-cC6H9}Cl(dppe)2] ( 1 e ) were allowed to react with the corresponding propargylic alcohol HC≡CC(Me)R(OH) (R=Ph ( A ), cC4H3S ( B ), 4-MeS-C6H4 ( C ), DMBT ( D ) or HC≡C-cC6H10(OH) ( E ) in the presence of TlBF4 and DBU to presumably give alkenylacetylide/allenylidene intermediates trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dppe)2]PF6 ([ 2 ]PF6). These complexes were not isolated but deprotonated to give the isolable bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dppe)2] (R=Ph ( 3 a ), cC4H3S ( 3 b ), 4-MeS-C6H4 ( 3 c ), DMBT ( 3 d )) and trans-[Ru{C≡C-cC6H9}2(dppe)2] ( 3 e ). Analogous reactions of trans-[Ru(CH3)2(dmpe)2], featuring the more electron-donating 1,2-bis(dimethylphosphino)ethane (dmpe) ancillary ligands, with the propargylic alcohols A or C and NH4PF6 in methanol allowed isolation of the intermediate mixed alkenylacetylide/allenylidene complexes trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dmpe)2]PF6 (R=Ph ([ 4 a ]PF6), 4-MeS-C6H4 ([ 4 c ]PF6). Deprotonation of [ 4 a ]PF6 or [ 4 c ]PF6 gave the symmetric bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dmpe)2] (R=Ph ( 5 a ), 4-MeS-C6H4 ( 5 c )), the first of their kind containing the dmpe ancillary ligand sphere. Attempts to isolate bis(allenylidene) complexes [Ru{C=C=C(Me)R}2(PP)2]2+ (PP=dppe, dmpe) from treatment of the bis(alkenylacetylide) species 3 or 5 with HBF4 ⋅ Et2O were ultimately unsuccessful.  相似文献   

3.
The reaction of Ru(RL1)(PPh3)2(CO)Cl,1, with quinolin-8-ol (HQ) has afforded complexes of the type [Ru(RL2)(PPh3)2(CO)(Q)],3, in excellent yield (RL1 is C6H2O-2-CHNHC6H4R(p)-3-Me-5, RL2 is C6H2OH-2-CHNC6H4R(p)-3-Me-5 and R is Me, OMe, Cl). In this process, quinolin-8-olato (Q) undergoes five-membered chelation, the iminium-phenolato function tautomerizing to the imine-phenol function. In dichloromethane solution,3 displays a quasireversible3 +/3 couple near 0·50 V vs SCE (3 + is the ruthenium (III) analogue of3). Coulometrically generated solutions of3 + display a strong absorption near 395 nm associated with a shoulder near 475 nm and rhombic EPR spectra withg values near 2·55, 2·13, 1·89. Solutions of3 absorb near 415 nm and emit near 510 nm at 298 K and 585 nm at 77 K. The fluorescence is believed to originate from the3MLCT state  相似文献   

4.
Homogeneous olefin polymerization catalysts are activated in situ with a co-catalyst ([PhN(Me)2-H]+[B(C6F5)4] or [Ph3C]+[B(C6F5)4]) in bulk polymerization media. These co-catalysts are insoluble in hydrocarbon solvents, requiring excess co-catalyst (>3 eq.). Feeding the activated species as a solution in an aliphatic hydrocarbon solvent may be advantageous over the in situ activation method. In this study, highly pure and soluble ammonium tetrakis(pentafluorophenyl)borates ([Me(C18H37)2N-H]+[B(C6F5)4] and [(C18H37)2NH2]+[B(C6F5)4]) containing neither water nor Cl salt impurities were prepared easily via the acid–base reaction of [PhN(Me)2-H]+[B(C6F5)4] and the corresponding amine. Using the prepared ammonium salts, the activation reactions of commercial-process-relevant metallocene (rac-[ethylenebis(tetrahydroindenyl)]Zr(Me)2 (1-ZrMe2), [Ph2C(Cp)(3,6-tBu2Flu)]Hf(Me)2 (3-HfMe2), [Ph2C(Cp)(2,7-tBu2Flu)]Hf(Me)2 (4-HfMe2)) and half-metallocene complexes ([(η5-Me4C5)Si(Me)2(κ-NtBu)]Ti(Me)2 (5-TiMe2), [(η5-Me4C5)(C9H9(κ-N))]Ti(Me)2 (6-TiMe2), and [(η5-Me3C7H1S)(C10H11(κ-N))]Ti(Me)2 (7-TiMe2)) were monitored in C6D12 with 1H NMR spectroscopy. Stable [L-M(Me)(NMe(C18H37)2)]+[B(C6F5)4] species were cleanly generated from 1-ZrMe2, 3-HfMe2, and 4-HfMe2, while the species types generated from 5-TiMe2, 6-TiMe2, and 7-TiMe2 were unstable for subsequent transformation to other species (presumably, [L-Ti(CH2N(C18H37)2)]+[B(C6F5)4]-type species). [L-TiCl(N(H)(C18H37)2)]+[B(C6F5)4]-type species were also prepared from 5-TiCl(Me) and 6-TiCl(Me), which were newly prepared in this study. The prepared [L-M(Me)(NMe(C18H37)2)]+[B(C6F5)4]-, [L-Ti(CH2N(C18H37)2)]+[B(C6F5)4]-, and [L-TiCl(N(H)(C18H37)2)]+[B(C6F5)4]-type species, which are soluble and stable in aliphatic hydrocarbon solvents, were highly active in ethylene/1-octene copolymerization performed in aliphatic hydrocarbon solvents.  相似文献   

5.
Reaction of [MX(CO)2(η7-C7H7)] (M=Mo, X=Br; M=W, X=I) with two equivalents of CNBut in toluene affords the trihapto-bonded cycloheptatrienyl complexes [MX(CO)2(CNBut)2(η3-C7H7)] (1, M=Mo, X=Br; 2, M=W, X=I). The X-ray crystal structure of 2 reveals a pseudo-octahedral molecular geometry with an asymmetric ligand arrangement at tungsten in which one CNBut is located trans to the η3-C7H7 ring. Treatment of 2 with tetracyanoethene results in 1,4-cycloaddition at the η3-C7H7 ring to give [WI(CO)2(CNBut)2{η3-C9H7(CN)4}], 3. The principal reaction type of the molybdenum complex 1 is loss of carbonyl and bromide ligands to afford substituted products [MoBr(CNBut)2(η7-C7H7)] 4 or [Mo(CO)(CNBut)2(η7-C7H7)]Br. Reaction of [MoBr(CO)2(η7-C7H7)] with one equivalent of CNBut in toluene at 60°C affords [MoBr(CO)(CNBut)(η7-C7H7)], 5, which is a precursor to [Mo(CO)(CNBut)(NCMe)(η7-C7H7)][BF4], 6, by reaction with Ag[BF4] in acetonitrile. In contrast with the parent dicarbonyl systems [MoX(CO)2(η7-C7H7)], complexes of the Mo(CO)(CNBut)(η7-C7H7) auxiliary, 5 and 6, do not afford observable η3-C7H7 products by ligand addition at the molybdenum centre.  相似文献   

6.
The heterogeneous phase reaction of [Ru(η2-RL)(PPh3)2(CO)Cl] (1) with the sodium salts of dimethyl dithiocarbamate (MeDTC), diethyl dithiocarbamate (EtDTC), and pyrrolidine dithiocarbamate (PyrDTC) ligands led to the isolation of bright-yellow crystalline solids of type [Ru(η1-RL)(PPh3)2(CO)(R′DTC)] (2(R)(R′DTC)) where η2-RL is C6H2O-2-CHNHC6H4R(p)-3-Me-5, η1-RL is C6H2OH-2-CHNC6H4R(p)-3-Me-5, R is Me, OMe, Cl, and R = Me, Et, Pyr. The binding of dithiocarbamate ligand is accompanied by the dissociation of Ru-O and Ru-Cl bonds along with concomitant prototropic shift from iminium–phenolato to imine–phenol motif. The reaction also involves a sterically controlled change in rotational conformation in going to the products. The X-ray crystal structure of [Ru(η1-ClL)(PPh3)2(CO)(EtDTC)] (2(Cl)(EtDTC)) has been described here. An account of different spectral (UV–Vis, IR, NMR) and electrochemical data of the complexes are also asserted. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) analyses were performed to scrutinize the electronic structure and the absorption spectra of the complexes. One of the dithiocarbamato complexes has also been found to have in vitro antiproliferative properties against MDA-MB-231 breast cancer cell line which was determined by MTT assay. Cell death occurs mainly through apoptosis and flow cytometric analysis indicates that the complex induces cell cycle arrest in the sub G0/G1 phase.  相似文献   

7.
The reaction of [(η5‐L3)Ru(PPh3)2Cl], where; L3 = C9H7 ( 1 ), C5Me5 (Cp*) ( 2 ) with acetonitrile in the presence of [NH4][PF6] yielded cationic complexes [(η5‐L3)Ru(PPh3)2(CH3CN)][PF6]; L3= C9H7 ([3]PF6) and L3 = C5Me5 ([4]PF6), respectively. Complexes [3]PF6 and [4]PF6 reacts with some polypyridyl ligands viz, 2,3‐bis (α‐pyridyl) pyrazine (bpp), 2,3‐bis (α‐pyridyl) quinoxaline (bpq) yielding the complexes of the formulation [(η5‐L3)Ru(PPh3)(L2)]PF6 where; L3 = C9H7, L2 = bpp, ([5]PF6), L3 = C9H7, L2 = bpq, ([6]PF6); L3 = C5Me5, L2 = bpp, ([7]PF6) and bpq, ([8]PF6), respectively. However reaction of [(η5‐C9H7)Ru(PPh3)2(CH3CN)][PF6] ([3]PF6) with the sterically demanding polypyridyl ligands, viz. 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine (tptz) or tetra‐2‐pyridyl‐1,4‐pyrazine (tppz) leads to the formation of unexpected complexes [Ru(PPh3)2(L2)(CH3CN)][PF6]2; L2 = tppz ([9](PF6)2), tptz ([11](PF6)2) and [Ru(PPh3)2(L2)Cl][PF6]; L2 = tppz ([10]PF6), tptz ([12]PF6). The complexes were isolated as their hexafluorophosphate salts. They have been characterized on the basis of micro analytical and spectroscopic data. The crystal structures of the representative complexes were established by X‐ray crystallography.  相似文献   

8.
Reactions between [Ru(thf)(PPh3)2(η-C5H5)]+ and lithium acetylides have given further examples of substituted ethynylruthenium complexes that are useful precursors of allenylidene and cumulenylidene derivatives. From Li2C4, mono- and bi-nuclear ruthenium complexes were obtained: single-crystal X-ray studies have characterised two rotamers of {Ru(PPh3)2(η-C5H5)}2(μ-C4), which differ in the relative cis and trans orientations of the RuLn groups. Protonation of Ru(CCCCH)(PPh3)2(η-C5H5) afforded the butatrienylidene cation [Ru(C=C=C=CH2)(PPh3)2(η-C5H5)]+, which reacted readily with atmospheric moisture to give the acetylethynyl complex Ru{CCC(O)Me}(PPh3)2(η-C5H5), also fully characterised by an X-ray structural study.  相似文献   

9.
Summary The activities of the diethylenetriaminemonoacetatocobalt(III) complexes, [Co(en)(DTMA)]I2, [CoX2(DTMA)] and [CoCO3(DTMA)]·H2O (DTMA=diethylenetriaminemonoacetato or formally 3-amino-3, 6-diazaoctanato; en=ethylenediamine, X=Cl, NO 2 , NCS) were studied onEscherichia coli B growing in a minimal glucose medium in both lag- and log-phases. Activities decrease in the order: [Co(NCS)2(DTMA)]> [Co(NO2)2(DTMA)]>[Co(en)(DTMA)]I2>[CoCl2(DTMA)] >[CoCO3(DTMA)]·H2O. The antagonistic activities of the complexes were also studied.  相似文献   

10.
Ag+-assisted dechlorination of blue cis-trans-cis Ru(R-aai-R′)2Cl2 followed by the reaction with chloranilic acid (H2CA) in the presence of Et3N, gives a neutral mononuclear violet complex [Ru(R-aai-R′)2(CA)]. [R-aai-R′=p-R-C6H4—N=N—C3H2—NN, abbreviated as an N,N′ chelator where N(imidazole) and N(azo) represent N and N′, respectively; R = H (a), OMe (b), NO2 (c) and R′= Me (4), Et(5), Bz(6)]. All the complexes exhibit strong intense MLCT transitions in the visible region and weak broad bands at higher wavelength (>700 nm). Visible transitions (580–595 nm) show a negative solvatochromic effect. The cyclic voltammograms show two quasireversible to irreversible couples positive to SCE and are due to CA/CA2− (1.2–1.35 V) and Ru(III)/Ru(II) (1.6–1.8 V) redox processes. Three couples, negative to SCE, are assigned to CA2−/CA3− (−0.2 to −0.3 V), and azo reductions (−0.5 to −0.7, −0.8 to −0.9 V) of the chelated R-aai-R′.  相似文献   

11.
Zusammenfassung Durch Ersetzung des Cadmiums im Clathrat Cden[Ni(CN)4]·2C6H6 wurden drei Verbindungen des TypsM(en) m[Ni(CN)4nC6H6 (M 2+=Ni, Cu, Zn;m=2–3;n=0.14–0.28) hergestellt und charakterisiert.
Synthesis of ethylendiamine-(metal II)-tetracyanoniccolate dibenzene clathrate compounds
Replacing cadmium ion in Cden[Ni(CN)4]·2C6H6 clathrate compound three compounds ofM(en) m[Ni(CN)4nC6H6 type (M 2+=Ni, Cu, Zn;m=2–3;n=0.14–0.28) were prepared and characterized.
  相似文献   

12.
In contrast to ruthenocene [Ru(η5‐C5H5)2] and dimethylruthenocene [Ru(η5‐C5H4Me)2] ( 7 ), chemical oxidation of highly strained, ring‐tilted [2]ruthenocenophane [Ru(η5‐C5H4)2(CH2)2] ( 5 ) and slightly strained [3]ruthenocenophane [Ru(η5‐C5H4)2(CH2)3] ( 6 ) with cationic oxidants containing the non‐coordinating [B(C6F5)4]? anion was found to afford stable and isolable metal?metal bonded dicationic dimer salts [Ru(η5‐C5H4)2(CH2)2]2[B(C6F5)4]2 ( 8 ) and [Ru(η5‐C5H4)2(CH2)3]2[B(C6F5)4]2 ( 17 ), respectively. Cyclic voltammetry and DFT studies indicated that the oxidation potential, propensity for dimerization, and strength of the resulting Ru?Ru bond is strongly dependent on the degree of tilt present in 5 and 6 and thereby degree of exposure of the Ru center. Cleavage of the Ru?Ru bond in 8 was achieved through reaction with the radical source [(CH3)2NC(S)S?SC(S)N(CH3)2] (thiram), affording unusual dimer [(CH3)2NCS2Ru(η5‐C5H4)(η3‐C5H4)C2H4]2[B(C6F5)4]2 ( 9 ) through a haptotropic η5–η3 ring‐slippage followed by an apparent [2+2] cyclodimerization of the cyclopentadienyl ligand. Analogs of possible intermediates in the reaction pathway [C6H5ERu(η5‐C5H4)2C2H4][B(C6F5)4] [E=S ( 15 ) or Se ( 16 )] were synthesized through reaction of 8 with C6H5E?EC6H5 (E=S or Se).  相似文献   

13.
Complexes of the type [Pt R2 (dppma-PP′)] (R─Me, Et, Ph, CH2Ph, C6H4 Me-p, C6H4OMe-2, CH2CMe3, 1-naphthyl, C6H4Me-o, dppma = Ph2PNMe PPh2) have been prepared from [PtCl2, (dppma-PP′)] and the corresponding alkyl-lithium or Grignard reagents. Equilibrium constants, k, for the conversion of [PtR2 (dppma-PP′)] into cis-[PtR2(dppma-P)2] with dppma were studied using 31P NMR spectroscopy at room temperature. Equilibrium is rapidly established for R─C6H4-Me-o, at 20°C. Complex of the type cis-[PtR2 (dppma-P)2] was isolated R─C6H4 Me-o. The complexes [PtMe2(dppma-P)2] and [Pt(o-methoxyphenyl)2(dppma-P)2] were prepared, but unfortunately decomposed once isolated, the only evidence for its formation being from 31P-{1H} NMZR spectroscopy. The o-tolyl or 1-naphthyl complexes exist as syn-anti mixtures in solution, due to restricted rotation around the platinum aryl bonds. Treatment of several complexes of the type [PtR2(dppma-PP′)] with MeI gives [PtR2Me(I)(dppma-PP′)] with trans addition of MeI. Treatment of [PtR2(dppma-PP′)] with HCl gives [Pt Cl (R) (dppma-PP′)] for R─C6H2Me3-2,4,6, C6H4-CH3-2, C6H4-Me-4, Me, 1-naphthyl. The 1H, 31P NMR parameters for these complexes are discussed. Attempted preparation of complexes of the type [PtR2 (dppma-P)2M] (R─C6H4-Me-2, Me CN-C6H4-Me-4); M─Pd, Pt, Au,) are reported.  相似文献   

14.
Zusammenfassung Es wurden VerbindungenLnCl3·H2 DBox * (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb) und La2(DBox)3·6 CH3OH, Pr2(DBox)3·6 CH3OH, Nd2(DBox)3·3 C2H5OH, Sm2(DBox)3· ·3 C2H5OH, Gd2(DBox)3·3 C2H5OH, Tb2(DBox)3·2 C2H5OH, DyH(DBox)2·2 C2H5OH, HoH(DBox)2·2 C2H5OH, ErH(DBox)2, YH(DBox)2·H2O isoliert. Diese wurden mittels Thermoanalyse und Röntgenstreuung untersucht sowie ihre IR-Absorptionspektren gemessen und diskutiert.
Compounds of rare earth elements with -4-dimethylaminobenzoinoxime
The compoundsLnCl3·H2 DBox * (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb) and La2(DBox)3·6 CH3OH, Pr2(DBox)3·6 CH3OH, Nd2(DBox)3·3 C2H5OH, Sm2(DBox)3·3 C2H5OH, Gd2(DBox)3· ·3 C2H5OH, Tb2(DBox)3·2 C2H5OH, DyH(DBox)2·2 C2H5OH, HoH(DBox)2·2 C2H5OH, ErH(DBox)2 and YH(DBox)2·H2O were isolated, and studied by thermoanalysis and X-ray diffraction. Their IR absorption spectra were recorded and are discussed.
  相似文献   

15.
The formation of magnetically active polynuclear FeIII pivalates in the FeSO4·7H2O-KOOCCMe3 system was studied. The reaction of FeSO4·7H2O (1) with KOOCCMe3 in EtOH in air afforded the antiferromagnetic trinuclear complex [Fe3O(OOCCMe3)6(H2O)3]+[OOCCMe3]·3EtOH. A change of the solvent (EtOH) in this system to a 40:1 benzene—THF mixture resulted in the formation of the antiferromagnetic hexanuclear cluster [Fe6(O)2(OH)2(OOCCMe3)12(HOOCCMe3)(THF)]·1.5C6H6. The addition of trimethylacetic acid to EtOH and recrystallization from hexane gave rise to the antiferromagnetic coordination polymer [K2Fe4(O)2(OOCCMe3)10(HOOCCMe3)2(H2O)2]n (7). Recrystallization of the latter from acetonitrile afforded the antiferromagnetic tetranuclear complex K2Fe4(O)2(OOCCMe3)10(HOOCCMe3)2(MeCN)2. The structures of these compounds were established by X-ray diffraction analysis, and their magnetic susceptibilities and thermal decomposition were investigated.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2403–2413, November, 2004.  相似文献   

16.
Thirteen phases are now evidenced in the composition space diagram of the Al(OH)3tren–HF–ethanol system at 190 °C. Solvothermal syntheses are performed under microwave heating. Six new organic–inorganic fluorides crystallise and their structures are determined: (H3O)·[H4tren]2·(AlF6)3·6H2O (P-1, Z = 2), [H3tren]2·(AlF5(H2O))3·8H2O (C2/c, Z = 8), [H3tren]4·(AlF6)2·(Al2F11)·(F)·10H2O (P21/n, Z = 2), [H3tren]2·(Al4F18)·3.5H2O (P63, Z = 2), [H3tren]2·(Al4F18) (P-1, Z = 1), and [H3tren]4·(Al8F35)·(OH)·H2O (P-1, Z = 1). The existence domains are approximately located for all phases. Tren amine is tetraprotonated at high HF concentration, otherwise it is triprotonated. A protonated water cluster, H3O+(H2O)6, appears in (H3O)·[H4tren]2·(AlF6)3·6H2O while a new Al4F18 unit, found in [H3tren]2·(Al4F18), is evidenced; it results from corner and edge sharing association of four AlF6 octahedra. Finally, the structure of [H3tren]4·(Al8F35)·(OH)·H2O revealed the largest known fluoroaluminate polyanion, built from eight vertex sharing AlF6 octahedra, (Al8F35)11−.  相似文献   

17.
The complexes (OC)4(CNBu t )ReOs(CO)3(CNBu t )Os(CO)3(CNBu t )Re(CNBu t )(CO)4 (A) and (OC)3(CNBu t )2ReOs(CO)4Os(CO)3(CNBu t )Re(CNBu t )(CO)4 (B) have been isolated in low yield from the reaction of Os(CO)3(CNBu t )2 with Re2(-H)(--C2H3)(CO)8 in hexane at room temperature. Both compounds have approximately linear ReOs2Re chains. The Re–Os lengths are in the range 2.9311(7)–2.952(1) Å the Os–Os lengths are 2.875(1) (A) and 2.8759(7) Å (B).  相似文献   

18.
Compounds of trigonal cluster chloroaqua complexes with cucurbit[8]uril were synthesized by slowly evaporating HCl solutions of chalcogenides heterometallic cubane cluster complexes of molybdenum and tungsten with cucurbit[8]uril in air; the complexes were characterized by X-ray diffraction analysis: (H3O)8[Mo3S4(H2O)2.5Cl6.5]2Cl(PdCl4)·(C48H48N32O16)· 29H2O (a = 13.3183(17) Å, b = 13.7104(18) Å, c = 18.225(3) Å; α = 80.263(3)°, β = 77. 958(3)°, γ = 87.149(4)°, V = 3207.4(7) Å3, space group P , Z = 1, ρ(calc) = 1.900 g/cm3), (H3O)4 [Mo3S4(H2O)3Cl6]2·(C48H48N32O16)3·68H2O (a = 21.413(6) Å, c = 49.832(10) Å; γ = 120°, V = 19788(8) Å3, space group R , Z = 3, ρ(calc) = 1.695 g/cm3), (H3O)6 [Mo3S4(H2O)3Cl6]2Cl2·(C48H48N32O16)·12H2O (a = 15.881(2) Å, b = 17.191(2) Å, c = 23.276(4) Å; β = 98.865(15)°, V = 6278.7(15) Å3, space group P21/c, Z = 2, ρ(calc) = 1.638 g/cm3), [W3S4(H2O)5Cl4]2·(C48H48N32O16)3·35H2O (a = 21.038(3) Å; α = 61.20(1)°, V = 6762.0(14) Å3, space group R , Z = 1, ρ(calc) = 1.582 g/cm3). The [Mo3S4(H2O)3Cl6]2− anion complex was isolated as three geometrical isomers.Original Russian Text Copyright © 2004 by E. V. Chubarova, D. G. Samsonenko, H. G. Platas, F. M. Dolgushin, A. V. Gerasimenko, M. N. Sokolov, Z. A. Starikova, M. Yu. Antipin, and V. P. Fedin__________Translated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 6, pp. 1049–1058, November–December, 2004.  相似文献   

19.
The clusters Fe2Ru(CO)12–n (CNBu t ) n (3, n=1; 4, n=2), FeRu2(CO)12–n (CNBu t ) n (5, n=1, 6, n=2) and FeRu2(CO)11(CNCy) (5a) have been prepared by direct substitution from the parent carbonyl precursors Fe2Ru(CO)12 (1) and FeRu2(CO)12 (2). All compounds have been characterized spectroscopically and clusters 3, 4, 5, and 6 by single crystal X-ray determinations. In all cases, the isonitrile ligands adopt axial or pseudo-axial positions on a ruthenium atom. The structures of 35 are very similar to their parent clusters, but the extent of metal framework disorder is significantly less. Cluster 6 adopts the same C 2v Fe3(CO)12 type structure as 4, and thus differs markedly from the parent compound 2, which has a D 3 structure .  相似文献   

20.
[Ru(RaaiR)2(EtOH)2](ClO4)2[RaaiR= 1-alkyl-2-(arylazo)imidazole, p-R-C6H4-N = N-C3H2N-N(1)-R, R = H (a), Me (b), Cl (c), R= Me (1, 3), Et (2, 4)] reacts with nucleobases [NB – adenine (A), guanine (G)] in aqueous EtOH to give red–violet mixed ligand complexes of the type [Ru(RaaiR)2(NB)(H2O)](ClO4)2. The solution electronic spectra exhibit a strong MLCT band at 540–560 nm in MeCN. The cyclic voltammogram shows a RuIII/RuII couple at 1.3–1.4 V versus Ag/AgCl along with three successive ligand reductions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号