首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kara D  Fisher A  Hill SJ 《The Analyst》2005,130(11):1518-1523
An on-line flow injection method for the direct determination of trace elements in environmental samples is described. A mini-column packed with 2,6-diacetylpyridine functionalized Amberlite XAD-4 was used to preconcentrate and separate 8 trace metals (Cd, Co, Cu, Mn, Ni, Pb, U and Zn) from water and extracts from solid samples. The metals were eluted with 0.1 M HNO(3) directly to the detection system (either inductively coupled plasma-mass spectrometry (ICP-MS) or flame atomic absorption spectrometry (FAAS)). As well as demonstrating that the resin could be used to preconcentrate ultra-trace analytes from natural waters, it was also shown to work well at a pH of 5.5. Therefore, after treatment of sample digests with sodium fluoride, samples that contain extremely large concentrations of iron may be analysed for trace analytes without the excess iron overloading the capacity of the resin. To this end, the analytes Cd, Co, Cu and Ni were preconcentrated from acid extracts of certified soil/sediment samples and then eluted with nitric acid to be determined on-line. Limits of detection (3sigma) of Cd = 0.33 microg l(-1), Co = 0.094 microg l(-1), Cu = 0.34 microg l(-1), Mn = 0.32 microg l(-1), Ni = 0.30 microg l(-1), Pb = 0.43 microg l(-1), U = 0.067 microg l(-1) and Zn = 0.20 microg l(-1) for the FI-ICP-MS system and Cd = 22 microg l(-1), Co = 60 microg l(-1), Cu = 10 microg l(-1) and Ni = 4.8 microg l(-1) for the FI-FAAS system were obtained. Analysis of certified reference materials showed good agreement with the certified values using the two methods.  相似文献   

2.
Willie SN  Tekgul H  Sturgeon RE 《Talanta》1998,47(2):439-445
A rapid and simple on-line method is described for the preconcentration of Mn, Co, Ni, Cu, Zn, Cd and Pb from sea water using 8-hydroxyquinoline immobilized onto silicone tubing (Sil-8-HQ) via the Mannich reaction. Recoveries between 35 and 95% and limits of detection in the ppt range were obtained using a 2 m long Sil-8-HQ tube with a sample flow rate of 1.0 ml min(-1). A tube could be subjected to sample loading and elution cycles over 200 times. The capacity was 1.5 and 1.3 mug cm(-2) for Cu and Mn, respectively. Cu, Cd, Co, Pb, Mn, Zn and Ni were determined in coastal and open ocean seawater using flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS). Good agreement with certified values for the certified reference materials NASS-4 and CASS-3 was demonstrated when quantitation was undertaken by the method of additions.  相似文献   

3.
A novel, highly sensitive method for simultaneous separation and determination of Cu2+, Ni2+, Zn2+, Cd2+, Co2+, Mn2+ and Pb2+ in biochemical samples was developed and evaluated by ion chromatography. All of these metals were well separated on a bifunctional ion-exchange column by a concentration gradient of oxalic acid and sodium chloride eluents, coupled with spectrophotometric detection after post-column derivatization with 2-[(5-bromo-2-pyridyl)azo]-5-diethylaminophenol at 560 nm. The method detection limits (signal-to-noise 3:1) were at microg l(-1) levels. The calibration graphs were linear (r2>0.999) over two-orders of magnitude. This technique was optimized and validated by analyzing five standard biochemical references.  相似文献   

4.
The determination of trace metals in river water and ground water by DPSV is seriously disturbed by the presence of organic complexes. The influence of these substances can be eliminated by acidification of the samples with acids. Cd, Pb and Cu were determined at pH 1.1 (HNO3 medium) and Zn, Cd, Pb and Cu at pH 2 (HCl medium), in both the Nile river and ground water. Zn was determined at pH 3.5 in HCl and pH 4.5 in HNO3, after neutralizing the samples with NH3/NH4Cl buffer. Manganese could then be determined, after further addition of ammoniacal buffer solution up to pH 7.5 and 8.5. Ni and Co were determined in the adsorptive mode after formation of dimethylglyoximates at pH 9.2. The effect of pH on the stripping peaks of manganese was studied. Good agreement was observed between DPSV and AAS results for Zn, Cd, Pb, Cu and Mn, but the concentrations of Ni and Co were below the detection limits for AAS. Good agreement was obtained between DPSV results in HCl and HNO3 for Ni and Co. The results indicate that decomposition of organic complexes by acidification with HNO3 is better than in the case with HCl for Zn, Pb, Cu, Ni and Co, but HCl is better than HNO3 for Cd and Mn.  相似文献   

5.
Summary A method of separation and colorimetric determination of trace amounts (10–4–10–5%) of Cu, Al, Fe, Bi, Pb, Mn, Cd, Zn, Co, and M in platinum-rhodium (10%) alloys has been developed. The elements to be determined are retained on a column containing the strongly acidic cation-exchanger Amberlite IR-120, from dilute hydrochloric acid medium (pH 1–1.5), while platinum and rhodium pass through in the form of anionic chloride complexes. The individual metals are eluted and concentrated and then separated by extraction and carrier precipitation. The metals are determined by means of sensitive colorimetrie methods with dithizone (Cu, Bi, Pb, Cd, Zn), eriochromecyanine R (Al), 2-nitroso-1-naphthol (Co),-furildioxime (Ni), 1-(2-pyridylazo)-2-naphthol (Mn), and thiocyanate (Fe). The error of the determination does not exceed 15%.
Zusammenfassung Eine Trennungs- und Bestimmungsmethode für Spuren (10–4 bis 10–5%) von Cu, Al, Fe, Bi, Pb, Mn, Cd, Zn, Co und Ni in PIatm-Rhodium-(10%)-Legierungen wurde ausgearbeitet.Die angeführten Elemente werden mit Amberlit IR-120 aus der verd. salzsauren Lösung (pH 1 bis 1,5) von Platin und Rhodium getrennt, die als Anionchloridkomplexe im Eluat bleiben. Die einzelnen Metalle werden nach Elution aus ihrer Lösung durch Extraktion bzw. Mitfällung getrennt und kolorimetrisch mit Dithizon (Cu, Bi, Pb, Cd, Zn), Eriochromcyanin R (Al), 2-Nitroso-1-naphthol (Co),-Furildioxim (Ni), 1-(2-Pyridylazo)-2-naphthol (Mn) und Rhodanid (Fo) bestimmt. Der Fehler beträgt weniger als 15%,
  相似文献   

6.
A general rapid on-line preconcentration method for the determination of trace metals coupled to flame atomic absorption spectrophotometry (FAAS) or ion chromatography (IC) with spectrophotometric detection is described. The method is based on the on-line precipitation of metal hydroxides with sodium hydroxide and their dissolution in a small volume of nitric acid solution. All the chemical and physical variables that affect the efficiency of metal precipitation and elution in the flow injection system have been studied. The detection limits obtained by FAAS are 0.1, 0.3, 0.5 and 0.5 mug l(-1) for Zn, Cu, Ni and Pb, respectively. When the on-line precipitation is coupled to IC with post-column derivatization with the spectrophotometric reagent 4-(2-pyridylazo) resorcinol (PAR), the detection limits are 3, 1, 5, 3, and 3 mug l(-1) for Cu, Zn, Ni, Co and Mn, respectively. The proposed general method was successfully applied to determine independently the above mentioned metals in compost and tap and river water samples.  相似文献   

7.
Hydrated antimony pentoxide is used to remove sodium ion for the determination of trace metals in scallop specimens of Plactopecten magellanicus. The concentrations of Cd, Cr, Co, Cu, Au, Fe, Pb, Mn, Hg, Ni, Ag and Zn were determined in the samples and in a standard reference material. This method yields improved detection limits with simple apparatus.  相似文献   

8.
A silica-based inorganic sorbent was synthesized by the thermal decomposition of ammonium heptamolybdate on silica and applied for the preconcentration and simultaneous determination of Cd, Co, Cr, Cu, Fe, Mn, Ni, and Pb in river water samples using a column system with flame atomic absorption spectrometry. Attenuated total reflection-Fourier transformation infrared spectroscopy, scanning electron microscopy, and electron dispersive spectroscopy were used for sorbent characterization. The effects of pH, sample volume, eluent type, eluent concentration, eluent volume, sample flow rate, and matrix ions (Al, Bi, Ca, Mg, and Zn) on the recovery of the metals in model solutions were investigated. The adsorption capacities (µmol g?1) of SiO2-MoO3 were 88.96 (Cd), 169.69 (Co), 153.85 (Cr), 188.88 (Cu), 179.05 (Fe), 163.81 (Mn), 136.31 (Ni), and 38.61 (Pb). The detection limits of the method were 9.09, 10.82, 10.77, 49.57, 31.64, 6.40, 8.86, 19.15?µg L?1 for Cd, Co, Cr, Cu, Fe, Mn, Ni, and Pb, respectively, with a preconcentration factor of 25. The developed method was used for the determination of the target metals in real samples and the recoveries for spiked samples were found to be from 91.2% to 102.9%.  相似文献   

9.
The concentrations of Cd, Co, Cu, Mn, Ni, Pb, and Zn in natural and sea waters are too low to be directly determined with by flame atomic absorption spectrometry (FAAS) or graphite furnace atomic absorption spectrometry (GFAAS). Specific sample preparations are requested that make possible the determination of these analytes by preconcentration or extraction. These techniques are affected by severe problems of sample contamination. In this work Cd, Co, Cu, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS) or by atomic absorption spectrometry, in fresh and seawater samples, after on-line preconcentration and following solvent elution with a flow injection system. Bonded silica with octadecyl functional group C18, packed in a microcolumn of 100-μl capacity, was used to collect diethyldithiocarbamate complexes of the heavy metals in aqueous solutions. The metals are complexed with a chelating agent, adsorbed on the C18column, and eluted with methanol directly in the flow injection system. The methanolic stream can be addressed to FAAS for direct determination of Cu, Ni, and Zn, or collected in a vial for successive analysis by GFAAS. The eluted samples can be also dried in a vacuum container and restored to a little volume with concentrated HNO3and Milli-Q water for analysis by ICP-MS or GFAAS.  相似文献   

10.
Analysis of heavy metals in atmospheric particulate by ion chromatography   总被引:1,自引:0,他引:1  
Cu, Ni, Zn, Co, Fe+2, Mn, Cd, Fe+3 and Pb are easily separated and detected in isocratic mode by ion chromatography with post-column derivatization using a bifunctional ion-exchange column and an eluent formed by oxalic acid (28 mM) and sodium nitrate (250 mM). The separation is optimised by using a suggested sample solution containing a given concentration of chloride. Detection limits were 10-15 ppb for all the metals except for cadmium and lead, for which detection limits of 30 and 60 ppb were found, respectively. The method was tested on an atmospheric particulate certified sample. The measured values were in good agreement with certified values. Real samples of atmospheric particulate from industrial and urban sites were analysed and the results are discussed.  相似文献   

11.
Solvent extraction of metals with potassium-dihydro-bispyrazolyl-borate   总被引:1,自引:0,他引:1  
Shukla R  Rao GN 《Talanta》2002,57(4):633-639
The extraction of Cu(II), Ni(II), Co(II), Cd(II), Zn(II), Pb(II) and Mn(II) with potassium-dihydro-bispyrazolyl-borate (H(2)BPz(2)(-)) in dichloromethane has been studied. Extraction constants (logK(ex)) have been calculated for all metal systems and were compared with those obtained with dibenzoylmethane (DBM), thenoyltrifluoroacetone (HTTA) and 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (HPMBP). The method has been used for the determination of Cu(II), Co(II), Cd(II), Zn(II), Pb(II) and Mn(II) in standard alloys and for preconcentration of metal ions in synthetic samples.  相似文献   

12.
The distribution patterns and the organ-specific accumulation trends of 10 trace metals (iron, manganese, zinc, copper, chromium, nickel, cobalt, lead, cadmium and silver) and 4 major elements (sodium, potassium, calcium and magnesium) in 10 different tissues (heart, muscle, kidney, stomach, intestine, liver, gill, gonads, white skin and dark skin) of a benthic fish species (Solea senegalensis) from a densely populated coastal area affected by anthropogenic activities, the Bay of Cadiz (SW Spain), have been investigated. High variability of metal concentrations among tissues were found for Ca, Fe, Zn, Cu, Pb and Ag. Factor analysis was applied to study this variability. Five principal components were found explaining the 92.95% of the total variance and similarities in behavioural patterns of bioaccumulation were described. They associated Mg, Cr, Ni and Mn to intestine and stomach tissues (PC1), Ag, Cu and Cd to liver (PC2), Zn, K and Co to gonads (PC3), Na, Fe and Pb to gill, heart and kidney tissues (PC4) and Ca, Pb and Mn to gill and dark skin (PC5). The metallic concentration in the sediment and water was also studied. The pollution in this area was found moderate with outstanding values of Zn, Cu and Pb (average values of 139, 50.4 and 75.6?mg?kg?1, respectively) in sediment and dissolved Cu (average value of 2.5?µg?L?1). Metal bioconcentration trends followed the order Zn?>?Cu?>?Cd?>?Pb for dissolved metals in seawater, Cu?>?Zn?>?Cd?>?Pb?≈?Mn?>?Fe?≈?Ni?≈?Co for metals associated to particulate matter and Zn?≈?Cu?>?Cd?>?Mn?>?Co?≈?Fe?>?Ni?≈?Pb?>?Cr for metals in the sediment. Higher values were found for copper in liver, zinc in gonads and lead in gill, showing the relationship between biotic and abiotic environment. In addition, Cd bioconcentration factors were found high in liver and gill showing the sensitivity of sole to this metal even at low concentrations.  相似文献   

13.
Analytical results are reported for the determination of inorganic species in water and sediments sampled in the Senio river ecosystem. The species determined are Cu, Pb, Cd, Zn, Co, Cr, Ni, Fe, Mn, Hg, F-, Cl-, Br, NO3-, SO4-, Na+, K+, Ca++, Mg++, NH4+ in integrated water, and Cu, Pb, Cd, Zn, Co, Cr, Ni, Fe, Mn, Hg in sediments. For all the elements, in addition to detection limits, precision and accuracy are given: the former, expressed as relative standard deviation (sr), and the latter, expressed as relative error (e), were good, being in all cases lower than 6%. Limitedly to Cu, Pb, Cd and Zn a critical comparison with voltammetric measurements is also discussed.  相似文献   

14.
Prabhakaran D  Subramanian MS 《Talanta》2003,59(6):1227-1236
A new chelating polymeric sorbent was developed by functionalizing Amberlite XAD-16 with 1,3-dimethyl-3-aminopropan-1-ol via a simple condensation mechanism. The newly developed chelating matrix offered a high resin capacity and faster sorption kinetics for the metal ions such as Mn(II), Pb(II), Ni(II), Co(II), Cu(II), Cd(II) and Zn(II). Various physio-chemical parameters like pH-effect, kinetics, eluant volume and flow rate, sample breakthrough volume, matrix interference effect on the metal ion sorption have been studied. The optimum pH range for the sorption of the above mentioned metal ions were 6.0–7.5, 6.0–7.0, 8.0–8.5, 7.0–7.5, 6.5–7.5, 7.5–8.5 and 6.5–7.0, respectively. The resin capacities for Mn(II), Pb(II), Ni(II), Co(II), Cu(II), Cd(II) and Zn(II) were found to be 0.62, 0.23, 0.55, 0.27, 0.46, 0.21 and 0.25 mmol g−1 of the resin, respectively. The lower limit of detection was 10 ng ml−1 for Cd(II), 40 ng ml−1 for Mn(II) and Zn(II), 32 ng ml−1 for Ni(II), 25 ng ml−1 for Cu(II) and Co(II) and 20 ng ml−1 for Pb(II). A high preconcentration value of 300 in the case of Mn(II), Co(II), Ni(II), Cu(II),Cd(II) and a value of 500 and 250 for Pb(II) and Zn(II), respectively, were achieved. A recovery of >98% was obtained for all the metal ions with 4 M HCl as eluting agent except in the case of Cu(II) where in 6 M HCl was necessary. The chelating polymer showed low sorption behavior to alkali and alkaline earth metals and also to various inorganic anionic species present in saline matrix. The method was applied for metal ion determination from water samples like seawater, well water and tap water and also from green leafy vegetable, from certified multivitamin tablets and steel samples.  相似文献   

15.
A novel automated off-line preconcentration system for trace metals (Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in seawater was developed by improving a commercially available solid-phase extraction system SPE-100 (Hiranuma Sangyo). The utilized chelating resin was NOBIAS Chelate-PA1 (Hitachi High-Technologies) with ethylenediaminetriacetic acid and iminodiacetic acid functional groups. Parts of the 8-way valve made of alumina and zirconia in the original SPE-100 system were replaced with parts made of polychlorotrifluoroethylene in order to reduce contamination of trace metals. The eluent pass was altered for the back flush elution of trace metals. We optimized the cleaning procedures for the chelating resin column and flow lines of the preconcentration system, and developed a preconcentration procedure, which required less labor and led to a superior performance compared to manual preconcentration (Sohrin et al. [5]). The nine trace metals were simultaneously and quantitatively preconcentrated from ∼120 g of seawater, eluted with ∼15 g of 1 M HNO3, and determined by HR-ICP-MS using the calibration curve method. The single-step preconcentration removed more than 99.998% of Na, K, Mg, Ca, and Sr from seawater. The procedural blanks and detection limits were lower than the lowest concentrations in seawater for Mn, Ni, Cu, and Pb, while they were as low as the lowest concentrations in seawater for Al, Fe, Co, Zn, and Cd. The accuracy and precision of this method were confirmed by the analysis of reference seawater samples (CASS-5, NASS-5, GEOTRACES GS, and GD) and seawater samples for vertical distribution in the western North Pacific Ocean.  相似文献   

16.
Tokalioğlu S  Kartal S  Elçi L 《Annali di chimica》2002,92(11-12):1119-1126
A method was described for the determination of the elements Cr, Mn, Fe, Co, Ni, Cu, Cd, Pb, and Bi in waters by flame atomic absorption spectrometry (FAAS) after separation and preconcentration on Amberlite XAD-16 resin with sodium tetraborate using a chromatographic column. Parameters influencing the analytical performance, including pH and the volume of sample, amount of analyte and interfering effect of co-existing ions, were studied in detail. The recovery values were quantitative (> or = 95%), and the relative standard deviation (RSD) and detection limit (DL) varied in the range of 1.1-2.4% (n=10) and 0.002-0.177 microg m(-1) (3s, n=20), respectively. After being optimized, the proposed method was applied to the drinking water, waste water and artificial sea water samples. Recovery values of the elements investigated, were quantitative for tap water and synthetic sea water, except for Mn, Co and Ni (including also Cd for synthetic sea water). Recovery values of Cd, Pb, Cu and Co were found to be 95, 102, < or = 87, and < or = 83%, respectively, for the waste water samples.  相似文献   

17.
A sensitive and simple method for the simultaneous preconcentration of nutritionally important minerals in real samples has been reported. The method is based on the adsorption of Cu2+, Ni2+, Co2+ and Pb2+ on 4-propyl-2-thiouracil (PUT) loaded on activated carbon. The metals on the complexes are eluted using 5 mL 3 M HNO3 in acetone. The influences of the analytical parameters including pH and sample volume were investigated. The effects of matrix ions on the retentions of the analytes were also examined. The recoveries of analytes were generally higher than 95%. The detection limits for Cu2+, Ni2+, Co2+ and Pb2+ were 1.6, 1.3, 1.2, 2.3 ng ml(-1), respectively. The method has been successfully applied for these metals content evaluation in some real samples including natural water samples.  相似文献   

18.
A separation and enrichment procedure for the analysis of trace elements (Cd, Co, Cu, Fe, Mn, Ni, Pb, Tl, U, Zn) in seawater or brines from ore dumps by ICP-MS was established based on the complexation with sodium diethyldithiocarbamate-trihydrate (Na-DDTC) and separation on a phenyl column. The method was tested with seawater samples from the hydrothermal system of Axial Seamount, Juan de Fuca Ridge. The analytical results demonstrated the influence of hydrothermal activity on the concentration of Fe and Mn. Received: 2 December 1998 / Revised: 25 February 1999 / Accepted: 1 March 1999  相似文献   

19.
A separation and enrichment procedure for the analysis of trace elements (Cd, Co, Cu, Fe, Mn, Ni, Pb, Tl, U, Zn) in seawater or brines from ore dumps by ICP-MS was established based on the complexation with sodium diethyldithiocarbamate-trihydrate (Na-DDTC) and separation on a phenyl column. The method was tested with seawater samples from the hydrothermal system of Axial Seamount, Juan de Fuca Ridge. The analytical results demonstrated the influence of hydrothermal activity on the concentration of Fe and Mn. Received: 2 December 1998 / Revised: 25 February 1999 / Accepted: 1 March 1999  相似文献   

20.
《Microchemical Journal》2010,94(2):147-152
This study reports the spatial distribution pattern and degree of heavy metal pollution (Cd, Cr, Cu, Ni, Pb, Mn, Be, Co, Zn and U) in 169 urban road dust samples from urban area of Urumqi city. The spatial distribution pattern shows that Cu, Pb, Cr and Zn have similar patterns of spatial distribution. Their hot-spot areas were mainly associated with main roads where high traffic density was identified. Ni and Mn show similar spatial distributions coinciding with the industrial areas, while the spatial distribution patterns of Co and U show hot-spot areas were mainly located in the sides of the urban area where the road dust was significantly influenced by natural soils. The spatial distributions of Be and Cd were very different from other metals. The geo-accumulation index suggests that road dust in Urumqi city was uncontaminated to moderately contaminated with Cd, Cu, Ni, Pb, Mn, Be, Zn and U. The integrated pollution index shows IPIs of all road dust samples were higher than 1, suggesting that the road dust quality of Urumqi city has clearly been polluted by anthropogenic emission of heavy metals. Moreover, the spatial distribution pattern of IPIs also shows several distribution trends in the studied region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号