首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
Oh H  Choi EM  Jeong H  Nam KC  Jeon S 《Talanta》2000,53(3):535-542
New lipophilic tetraesters of calix[6]arene and calix[6]diquinone are investigated as cesium ion-selective ionophores in poly(vinyl chloride) membrane electrodes. For an ion-selective electrode based on calix[6]arene tetraester I, the linear response is 1x10(-6)-1x10(-1) M of Cs(+) concentrations. The selectivity coefficients for cesium ion over alkali, alkaline earth and ammonium ions are determined. The detection limit (log a (Cs (+))=-6.31) and the selectivity coefficient (log k (Cs (+),Rb (+))(pot )=-1.88) are obtained for polymeric membrane electrode containing calix[6]arene tetraester I.  相似文献   

2.
The stability constants of alkali metal complexes obtained from the followingO-substituted calix[4]arenes were determined by UV/Vis spectroscopy inmethanol at 20°C: 5,11,17,23-tetra-tert-butyl-25,27-bis(diethylcarbamoylmethoxy)-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene(cone-1), 25,27-syn-26,28-anti-5,11,17,23-tetra-tert-butyl-25,27-bis(diethylcarbamoylmethoxy)-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene (paco-1),5,11,17,23-tetra-tert-butyl-25,27-diethoxycarbonylmethoxy-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene(cone-2) and25,27-syn-26,28-anti-5,11,17,23-tetra-tert-butyl-25,27-diethoxycarbonylmethoxy-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene(paco-2). All ligands form 1:1 complexes with alkali metal cations. The amide-containing calixarenes were found to be more efficient for alkali metalcomplexation than those bearing ester substituents. While sodium ions are selectivelycomplexed by the two mixed amide-(phosphine oxide) calixarenes, the twoester-containing isomers cone-2 and paco-2 turned out to be selective towards potassium and rubidium ions, respectively. With allfour ligands the lowest stability constants were found for the lithium andcesium ions.  相似文献   

3.
anti-25,27-Bis-n-octyloxycalix[4]arene, the paco-isomer of25,27-bis-n-octyloxycalix[4]arene crown-6 ether, and the paco- and1,3-alt isomers of 25,27-bis-n-octyloxycalix[4]arene t-butylbenzocrown-6 ether were prepared. The crystal structures of anti-25,27-bis-n-octyloxycalix[4]arene, paco-25,27-bis-n-octyloxycalix[4]arene crown-6, and 1,3-alt-25,27-bis-n-octyloxycalix[4]arene crown-6 were determined and thesolution structure of anti-25,27-bis-n-octyloxycalix[4]arene was studied by 2D- and VT-NMR. The extraction of alkali metal nitrates by thepaco-25,27-bis-n-octyloxycalix[4]arene crown-6 and t-butylbenzocrown-6 ethers in 1,2-dichloroethane was compared to that of the corresponding 1,3-alt isomers.  相似文献   

4.
Two novel tweezer-like 25,27-dihydroxy-26,28-bis(phenylthiaethoxy)calix[4]arenes 6 and 7 were synthesized by the reaction of 25,27-dihydroxy-26,28-bis(bromoethoxy)calix[4]arenes 3 and 4 for the evaluation of their ion-selectivity in ion-selective electrodes (ISEs). X-ray structural analysis indicated that calix[4]arene 7 is in an interesting infinite linear aggregate via self-inclusion. For investigation of the influences of substitutes on the behavior of the ISEs, the halogen substituted aryl analogues of 25,27-dihydroxy-26,28-bis(arylthiaethoxy)calix[4]arenes 8-12 were also synthesized and their ISE performances were evaluated under the same conditions. ISEs based on 6-12 as neutral ionophores were prepared, and their selectivity coefficients for Ag+ (log KAg,M(pot)) were investigated against other alkali metal, alkaline-earth metal, lead, ammonium ions and some transition metal ions using the fixed interference method (FIM). These ISEs showed excellent Ag+ selectivity over most of the interfering cations examined, except for Hg2+ having relative smaller interference (log KAg,Hg(pot) < or = 2.1). The 19F NMR spectra of 9 and 9.AgClO4 were recorded for investigation the fluorine environments in the complex. The 19F NMR spectra strongly suggested that the fluorine atoms on ionophore 9 participated in ligation with silver cation.  相似文献   

5.
A series of novel N-chromogenic calix[4]arene azacrown ethers were synthesized as selective extractants of potassium ion. 1,3-Alternate calix[4]arene azacrown ethers were prepared by reacting 25,27-dipropyloxy-26,28-bis(5-chloro-3-oxapentyloxy) calix[4]arenes with p-toluenesulfonamide in the presence of potassium carbonate. The coupling reaction of calix[4]arene azacrown ether with 2-hydroxy-5-nitrobenzyl bromide in the presence of triethylamine in THF gave the chromogenic calix[4]arene azacrown ether in moderate yield. These compounds show high potassium selectivity over other metal ions as shown by two-phase extraction, bulk liquid membrane, and 1H NMR studies on a ligand-metal complex. It is assumed that the OH of the chromogenic group attached on nitrogen can assist the complexation by encapsulation of the metal.  相似文献   

6.
An unsymmetrical calix[4]-bis-crown ether having both conventional crown-6 and dibenzocrown-6 rings in a fixed 1,3-alternate conformation was synthesized with good yield by the reaction of a monocyclic calix[4]crown-6 with dibenzodimesylate in the presence of cesium carbonate. The cesium ion selectivity among alkali metal ions increased compared to symmetrical calix[4]-bis-crown-6. The solid state structureof the ligand-cesium complex illustrates a 1:2 complex ratio. On the contrary, insolution, e.g., extraction equilibrium and 1H NMR experiment gave a 1:1 complex ratio. From the result of the chemical shift change upon metal ion complex, the cesium ion seems to prefer the dibenzocrown loop to the conventional crown-6 ring.  相似文献   

7.

Hartree-Fock, second order Møller-Plesset perturbation theory, and density functional theory calculations were carried out to analyse the complexation of calix[4]arene with cationic species including H + and the alkali metal cations (Li + , Na + , K + , Rb + , and Cs + ). Special emphasis has been placed on conformational binding selectivity, and on the structural characterization of the complexes. Li + and Na + cations are located in the calix[4]arene lower rim. The larger cations (K + , Rb + , and Cs + ) complex preferentially with the calix[4]arene cone conformer, and their endo (inclusive) complexation is driven by cation- ~ interactions, leading in the case of K + to a structure that reflects a preferential interaction with two phenol rings. The endo complexation of Cs + with calix[4]arene is in agreement with X-ray diffraction data.  相似文献   

8.
The synthesis, complete characterization, and solid state structural and solution conformation determination of calix[n]arenes (n = 4, 6, 8) is reported. A complete series of X-ray structures of the alkali metal salts of calix[4]arene (HC4) illustrate the great influence of the alkali metal ion on the solid state structure of calixanions (e.g., the Li salt of monoanionic HC4 is a monomer; the Na salt of monoanionic HC4 forms a dimer; and the K, Rb, and Cs salts exist in polymeric forms). Solution NMR spectra of alkali metal salts of monoanionic calix[4]arenes indicate that they have the cone conformation in solution. Variable-temperature NMR spectra of salts HC4.M (M = Li, Na, K, Rb, Cs) show that they possess similar coalescence temperatures, all higher than that of HC4. Due to steric hindrance from tert-butyl groups in the para position of p-tert-butylcalix[4]arene (Bu(t)C4), the alkali metal salts of monoanionic Bu(t)C4 exist in monomeric or dimeric form in the solid state. Calix[6]arene (HC6) and p-tert-butylcalix[6]arene (Bu(t)C6) were treated with a 2:1 molar ratio of M(2)CO(3) (M = K, Rb, Cs) or a 1:1 molar ratio of MOC(CH(3))(3) (M = Li, Na) to give calix[6]arene monoanions, but calix[6]arenes react in a 1:1 molar ratio with M(2)CO(3) (M = K, Rb, Cs) to afford calix[6]arene dianions. Calix[8]arene (HC8) and p-tert-butylcalix[8]arene (Bu(t)()C8) have similar reactivity. The alkali metal salts of monoanionic calix[6]arenes are more conformationally flexible than the alkali metal salts of dianionic calix[6]arenes, which has been shown by their solution NMR spectra. X-ray crystal structures of HC6.Li and HC6.Cs indicate that the size of the alkali metal has some influence on the conformation of calixanions; for example, HC6.Li has a cone-like conformation, and HC6.Cs has a 1,2,3-alternate conformation. The calix[6]arene dianions show roughly the same structural architecture, and the salts tend to form polymeric chains. For most calixarene salts cation-pi arene interactions were observed.  相似文献   

9.
Yu Liu 《Tetrahedron》2003,59(40):7967-7972
A series of novel double-armed calix[4]arene derivatives, i.e. 5,11,17,23-tetra-tert-butyl -25,27-bis[2-[(2-hydroxy-5-(4-nitroazo)benzylidene)amino]ethoxy]-26,28-dihydroxy-calix[4]-arene (4), 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[(2-hydroxy-5-(2-nitroazo)benzylidene) amino]ethoxy]-26,28-dihydroxycalix[4]arene (5), 5,11,17,23-tetra-tert-butyl-25,27-bis[2-[(2-hydroxy-5-(4-chloroazo)benzylidene)amino]ethoxy]-26,28-dihydroxycalix[4]arene (6), have been synthesized as an selective chromoionophore for Na+. The complexation behavior of ligands 4-6 with alkali metal ions Na+, K+, Rb+and Cs+ has been evaluated by using UV-Vis spectrometry in CH3CN-H2O (99:1/V:V) solution at 25°C. The UV-Vis spectra show that the complexation of 4-6 with Na+exhibits obvious bathochromic shifts (λmax 379→480 nm) and there is a unique color change in the solution from yellow to red upon complexation. The binding constants for Na+ are higher than that of other alkali metal ions, giving the highest cation selectivity up to 7 for Na+/K+. The binding ability and photophysical behavior of alkali cations by calix[4]arene derivatives 4-6 are discussed from the point of view of substituted effects at the lower rim of parent calix[4]arene and size-fit concept between host calix[4]arenes and guest cations.  相似文献   

10.
Cesium possesses two long lived isotopes 135Cs and 137Cs and the first one has a very long (2.3 × 106 y) half life and is one of the most mobile nuclides in a repository.Calix[4]arene-crowns-6 in the 1,3-alternate conformation areemerging as a new class of ionophores exhibiting a very high efficiency and selectivity in the complexation of cesium ion and itsremoval from highly acidic ([HNO3] = 3–4 M) radioactive waste having also high sodium nitrate concentration ([NaNO3] = 2–4 M). In order to improve both efficiency and cesium selectivity we have synthesised the novel calix[4]arene dibenzo-crowns-6 1 and 2 and thecalix[4]arene-monobenzocrown-6 3 in 1,3-alternate conformationand evaluated their complexation properties towards alkali metal cations in homogeneous solution and in two phase systems, togetherwith their performance in radioactive waste treatment. All data confirm the higher Cs/Na selectivity of the 1,3-alternate calix[4]crown-6 1–3 containing aromatic rings in the polyether loop, in comparison to previously synthesised compounds of the same series.  相似文献   

11.
We investigate the self-assembly of modified calix[4]arene on gold surfaces. Calix[4]arene was modified through a reaction sequence which led to assembling of the crown-5 moiety and to the insertion of two thioether groups into the starting molecule. The so-obtained calix[4]arene-crown-5 bis(7-thiatridecyloxy) (hereafter called calix[4]arene) was in the stable 1,3-alternate conformation. The calix[4]arene/gold interface was investigated by means of spectroscopic ellipsometry (SE), scanning tunneling microscopy (STM) and cyclic voltammetry (CV). SE data indicate a layer thickness compatible with the formation of a monomolecular layer. This result is confirmed by STM imaging which shows the formation of a high density of small pits, one gold layer deep, a typical feature of self-assembled organosulphur monolayers on gold. CV measurements performed in presence of the [Ru(NH(3))(6)(2+/3+)] redox couple indicate a passivation of the metal electrode, resulting in a reduction of the redox current, after the layer deposition. CV has also been used to investigate the selectivity properties of calix[4]arene-covered gold electrodes by measuring the redox current decrease in the presence of different salt solutions. It is found that calix[4]arene-covered electrodes are able to complex K(+) and Ba(2+), while no complexation is observed in the case of Li(+), Na(+), Cs(+), Mg(2+) and Ca(2+).  相似文献   

12.
Summary Two new kinds of calix[4]arene derivatives, 5, 11, 17, 23-tetra-tert-butyl-25,27-bis(isopropylcarbamoyl-methoxy)-26,28-diundecenyloxy calix[4]arene (C[4]A) and 25,27-dibutoxy-5, 11, 17, 23-tetra-tert-butyl-26,28-diundecenyloxy calix[4]arene (C[4]B0, are prepared and then are polymized by two different processes. Three calix[4]arene polysiloxane stationary phases for capillary gas chromatography are obtained. Their chromatographic characteristics, including column efficiency, polarity, selectivity, glass-transition temperature and thermal stability are studied. Retention mechanisms are also discussed.  相似文献   

13.
The tetrabutyl ester derived from 9,16,25,32-tetrahydroxy[3.1.3.1]metacyclophane was an excellent ionophore for constructing a K+-selective membrane electrode. This ionophore exhibited a much higher selectivity toward K+ than the structurally similar potassium ionophore IV commercially available from Fluka. In particular, the interference from organic ammonium ions decreased remarkably. Potassium ionophore IV possessed oxygen atoms in the ring structure, while the present ionophore changed the oxygen atoms to carbon atoms. Thus, the removal of oxygen atoms in ring constituents of the metacyclophane acted to reduce the interaction with the NH3+ group of organic ammonium ions. The size of the cavity of the present ionophore was between those of calix[4]arene and calix[6]arene derivatives, which act as Na+ and Cs+ ionophores, respectively, demonstrating that the ability to recognize alkali metal cations was strongly cavity size-dependent. The present K+-selective electrode had less interference from Rb+ and Cs+ than an electrode constructed using valinomycin, but suffered greater interference from Na+.  相似文献   

14.
The preparation of 25,27-bis[1-(2-ethyl)hexyl]- and 25, 27-bis[1-(2-tert-butoxy)ethyl]calix[4]arene-crown-6 combining one polyether crown-6 and one alkylchain O-attached on each side of a calix[4]arene in the cone, partial-cone, and 1,3-alternate conformations are reported. The control over 25, 27-bisalkylcalix[4]arene-crown-6 conformation via varying specific reaction conditions was studied. The series of calix[4]arenes have been prepared by two routes, which differ in the order in which the alkyl or polyether groups were introduced. Moreover, methods have been developed to selectively prepare the cone and partial-cone conformers by using an appropriate base in the alkylation reactions. The conformations of these new derivatives have been probed by (1)H NMR analysis and X-ray crystallography. The (1)H and (13)C NMR spectra of 25,27-bis[1-(2-ethyl)hexyl]calix[4]arene-crown-6, 1, 3-alternate 1, cone 2, and partial-cone 3 are also discussed.  相似文献   

15.
Bis(calix[4]diquinones) 1 and 2 and double calix[4]diquinone 3 have been synthesized from their corresponding double calix[4]arenes 4, 5, and 6, respectively. Compounds 4-6 have been prepared from one-pot and stepwise syntheses under high pressure. Complexation studies of ligands 1-3 with alkali metal ions such as Li+, Na+, K+, and Cs+ were carried out by 1H NMR titrations. Receptors 1 can selectively form 1:1 complexes with Na+. Ligand 2 prefers to form 1:1 complexes with K+ and Cs+. Receptor 3 retained the cone conformation of the calix[4]arene unit upon binding K+ but changed the conformation when complexing Li+ and Na+. Electrochemical studies using cyclic voltammetry and square wave voltammetry showed significant changing of voltammograms of 2 and 3 in the presence of alkali metal ions. Receptor 3 showed the electrochemically switched binding property toward Na+ and K+.  相似文献   

16.
A series of 1,3-alternate chromogenic azo-coupled calix[4]biscrowns in which the crown size varied with crown-5 and crown-6 have been synthesized. From the results of UV/vis band shift upon metal ion complexation, metal ions were entrapped only by the upper crown loop, causing the hypsochromic shift on the UV/vis spectra. Calix[4]bis(crown-5)(crown-6) revealed K(+) ion selectivity while calix[4]bis(crown-6)(crown-6) showed Cs(+) ion selectivity caused by a size complementarity between hosts and guest ions. From the UV band shift of 4 in which the NO(2) group is replaced by the NH(2) group, we observed bathochromic shift upon the metal ion addition, indicating that the metal ion is encapsulated in the lower crown ring because of strengthened pi-cation interaction by introducing the electron-donating NH(2) unit regardless of the steric hindrance between two azo-phenyl groups adjacent to the crown ring.  相似文献   

17.
A new class of ionophore consisting of two calix[4]arene units linked through the lower rim by two ethylene chains, in combination with propyl ether and phenolic functional groups, has been developed. These calix[4]semitube molecules exhibit remarkable selectivity and fast complexation kinetics for potassium over all Group 1 metal cations. Molecular modelling studies, using structural models derived from crystallographic data, suggest the potassium cation is complexed by a horizontal, side-on route and not through the calix[4]arene annulus. The length of the bridging alkylene chain between the respective calix[4]arenes of the semitube structure dictates the strength and selectivity of alkali metal cation binding.  相似文献   

18.
Kim S  Kim JS  Shon OJ  Lee SS  Park KM  Kang SO  Ko J 《Inorganic chemistry》2004,43(9):2906-2913
The preparation of an 1,3-alternate calix[4]arene phosphorus ligand, 25,27-bis(2-(diphenylphosphino)ethoxy)-26,28-bis(1-propyloxy)calix[4]arene (3), is presented. Ligand 3 is obtained in three steps in 64% overall yield. Reaction of 3 with [Rh(cot)2]BF4 produced the encapsulated rhodium complex [Rh[(P,P)-diphen-calix[4]arene]]BF4 (4). As revealed by a single-crystal X-ray diffraction study, the rhodium center has a bent coordination environment with a P-Rh-P angle of 135.66(3) degrees. Palladation of 3 employing [Pd(MeCN)4](BF4)2 yielded the chelate palladium complex 7 in which the palladium center has a slightly bent configuration. Treatment of the ligand with Pd(cod)Cl2 and [Pd(eta3-C4H7)(THF)2]BF4 leads to the isolation of the monometallic complex. Full characterization includes X-ray structural studies of compounds 3, 4, and 6.  相似文献   

19.
In this study, 25,27-bis(3-mercaptopropoxyl)-26,28-dihydroxy calix[4]arene was successfully synthesized from the reaction of calix[4]arene-dialkylbromide derivative with thiourea. The structure of 25,27-bis(3-mercaptopropoxyl)-26,28-dihydroxy calix[4]arene was fully characterized using 1HNMR, 13CNMR and elemental analysis techniques. The obtained mercapto-substituted calix[4]arene derivative was employed as an additive material along with cellulose triacetate (CTA) and 2-nitrophenyl octyl ether (o-NPOE) for the preparation of a novel polymer inclusion membrane (C@PIM). The structure and surface morphology of mercapto-substituted calix[4]arene-embedded polymer inclusion membrane was determined using thermogravimetric analysis, scanning electron microscopy and elemental analysis techniques. Donnan dialysis system was also used to assess the transport efficacy of C@PIM towards Pb(II), Zn(II), Cu(II), Ni(II), Cd(II) and Co(II) ions. The results show that new C@PIM exhibited 99% transport efficacy but also selectivity toward Ni(II) and other ions.  相似文献   

20.
Density functional theoretical analysis was performed to explore the enhanced selectivity of the Cs(+) ion over the Na(+) ion with hybrid calix[4]-bis-crown macrocyclic ligand compared to 18-crown-6 ether. The calculated selectivity data for Cs(+)/Na(+) with hybrid calix[4]-bis-crown ligand using the free energy of extraction employing thermodynamical cycle was found to be in excellent agreement with the reported solvent extraction results. The present study further establishes that the selectivity for a specific metal ion between two competitive ligands is primarily due to the complexation free energy of the ligand to the metal ions and is independent of the aqueous solvent effect but strongly depends on the dielectricity of the organic solvents and the presence of the coanion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号