首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The novel silver(I)thioantimonates(III) [C4N2H14][Ag3Sb3S7] (I) (C4N2H12=1,4-diaminobutane) and [C2N2H9]2[Ag5Sb3S8] (II) (C2N2H8=ethylenediamine) were synthesized under solvothermal conditions using AgNO3, Sb, S and the amines as structure directing molecules. Both compounds crystallize as orange needles with lattice parameters a=6.669(1) Å, b=30.440(3) Å, c=9.154(1) Å for I (space group Pnma), and a=6.2712(4) Å, b=15.901(1) Å, c=23.012(2) Å, β=95.37(1)° for II (space group P21/n). In both compounds the primary building units are trigonal SbS3 pyramids, AgS3 triangles and AgS4 tetrahedra. In I the layered [Ag3Sb3S7]2− anion is constructed by two different chains. An [Sb2S4] chain running along [100] is formed by vertex sharing of SbS3 pyramids. The second chain contains a Ag3SbS5 group composed of the AgS4 tetrahedron, two AgS3 units and one SbS3 pyramid. The Ag3SbS5 units are joined via S atoms to form the second chain which is also directed along [100]. The layered anion is then obtained by condensation of the two individual chains. The organic structure director is sandwiched by the inorganic layers and the shortest inter-layer distance is about 6.4 Å. In II the primary building units are linked into different six-membered rings which form a honeycomb-like layer. Two such layers are connected via Ag-S bonds of the AgS4 tetrahedra giving the final undulated double layer anion. The structure directing ethylenediamine cations are located in pairs between the layers and a sandwich-like arrangement of alternating anionic layers and organic cations is observed. The inter-layer separation is about 5.4 Å. Both compounds decompose in a more or less complex manner when heated in an argon atmosphere. The optical band gaps of about 1.9 eV for the two compounds proof the semiconducting behavior. For II the conductivity was measured with impedance spectroscopy and amounts to σ295K=7.6×10−7 Ω−1 cm−1. At 80 °C the conductivity is significantly larger by one order of magnitude.  相似文献   

2.
Single crystals of [H3dien]·(FeF6)·H2O (I) and [H3dien]·(CrF6)·H2O (II) are obtained by solvothermal synthesis under microwave heating. I is orthorhombic (Pna21) with a=11.530(2) Å, b=6.6446(8) Å, c=13.787(3) Å, V=1056.3(2) Å3 and Z=4. II is monoclinic (P21/c) with a=13.706(1) Å, b=6.7606(6) Å, c=11.3181(9) Å, β=99.38(1)°, V=1034.7(1) Å3 and Z=4. The structure determinations, performed from single crystal X-ray diffraction data, lead to the R1/wR2 reliability factors 0.028/0.066 for I and 0.035/0.102 for II. The structures of I and II are built up from isolated FeF6 or CrF6 octahedra, water molecules and triprotonated amines. In both structures, each octahedron is connected by hydrogen bonds to six organic cations and two water molecules. The iron-based compound is also characterized by 57Fe Mössbauer spectrometry: the hyperfine structure confirms the presence of Fe3+ in octahedral coordination and reveals the existence of paramagnetic spin fluctuations.  相似文献   

3.
A new organically templated pentaborate [C6N4H20]0.5[B5O6(OH)4] (1a) was prepared by reactions of triethylenetetramine (TETA) with excess boric acid in aqueous solution and characterized by elemental analysis, FTIR, TG-DTA, powder X-ray diffraction and photoluminescence spectroscopy. The structure of 1a was determined by a single-crystal X-ray diffraction. It crystallizes in the monoclinic system with space group P2(1)/c, a=9200(3) Å, b=14.121(5) Å, c=10.330(4) Å, β=91.512(4)°, V=1341.4(9) Å3, and Z=4. The luminescent properties of the compound were studied, and a green-blue luminescence occurs with an emission maximum at 507 nm upon excitation at 430 nm. The photoluminescence of 1a can be modified from green-blue to white by means of a simple heat-treatment process. The white-light-emission of sample 1c makes the pentaborate a good candidate for display and lighting applications in the white LED.  相似文献   

4.
The strontium chromium oxide [Sr2O2][CrO2]1.85 misfit layer compound has been synthesised at high-pressure and high-temperature conditions. Electron diffraction patterns and high-resolution transmission electron microscopy images along [001] show the misfit character of the different layers composing the structure with a supercell along the incommensurate parameter b≈7b1≈13b2. The modulated crystal structure has been refined within the superspace formalism against single-crystal X-ray diffraction data, employing the (3+1)-dimensional superspace group Cnmb(0σ20)0 0 s. The compound has a composite structure with lattice parameters a1=5.182(1) Å, b1=5.411(1) Å, c1=18.194(3) Å for the first, SrO, subsystem and the same a and c, but with b2=2.925(1) Å for the second, CrO2, subsystem. The layer stacking is similar to that of orthorhombic PbS(TiS2)1.18, but with a much stronger intersubsytem bonding in the case of the oxide. The intersubsystem lattice mismatch is mainly handled by displacement modulations of the Sr atoms, correlated with modulations of the valence, the coordination and the anisotropic displacement parameters.  相似文献   

5.
Two hetero-binuclear complexes [CpCoS2C2(B9H10)][Rh(COD)] (2a) and [CpCoSe2C2(B10H10)][Rh(COD)] (2b) [Cp = η5-pentamethylcyclopentadienyl, COD = cyclo-octa-1,5-diene (C8H12)] were synthesized by the reactions of half-sandwich complexes [CpCoE2C2(B10H10)] [E = S (1a), Se (1b)] with low valent transition metal complexes [Rh(COD)(OEt)]2 and [Rh(COD)(OMe)]2. Although the reaction conditions are the same, the structures of two products for dithiolato carborane and diselenolato carborane are different. The cage of the carborane in 2a was opened; However, the carborane cage in 2b was intact. Complexes 2a and 2b have been fully characterized by 1H, 11B NMR and IR spectroscopy, as well as by elemental analyses. The molecular structures of 2a and 2b have been determined by single-crystal X-ray diffraction analyses and strong metal-metal interactions between cobalt and rhodium atoms (2.6260 Å (2a) and 2.7057 Å (2b)) are existent.  相似文献   

6.
The new pyrazine-pillared solids, AgReO4(C4H4N2) (I) and Ag3Mo2O4F7(C4H4N2)3 (C4H4N2=pyrazine, pyz) (II), were synthesized by hydrothermal methods at 150 °C and characterized using single crystal X-ray diffraction (IP21/c, No. 14, Z=4, a=7.2238(6) Å, b=7.4940(7) Å, c=15.451(1) Å, β=92.296(4)°; IIP2/n, No. 13, Z=2, a=7.6465(9) Å, b=7.1888(5) Å, c=19.142(2) Å, β=100.284(8)°), thermogravimetric analysis, UV-Vis diffuse reflectance, and photoluminescence measurements. Individual Ag(pyz) chains in I are bonded to three perrhenate ReO4- tetrahedra per layer, while each layer in II contains sets of three edge-shared Ag(pyz) chains (π-π stacked) that are edge-shared to four Mo2O4F73- dimers. A relatively small interlayer spacing results from the short length of the pyrazine pillars, and which can be removed at just slightly above their preparation temperature, at >150-175 °C, to produce crystalline AgReO4 for I, and Ag2MoO4 and an unidentified product for II. Both pillared solids exhibit strong orange-yellow photoemission, at 575 nm for I and 560 nm for II, arising from electronic excitations across (charge transfer) band gaps of 2.91 and 2.76 eV in each, respectively. Their structures and properties are analyzed with respect to parent ‘organic free’ silver perrhenate and molybdate solids which manifest similar photoemissions, as well as to the calculated electronic band structures.  相似文献   

7.
The iron dithiolene compounds [Fe2(mnt)4]2− [1]2− and [Fe(NO)(mnt)2]n (n = 1−, [2]1−; n = 2−, [2]2−) ([mnt]2− = maleonitriledithiolate = [(NC)2C2S2]2−) have been characterized structurally by X-ray diffraction as their [Et4N]+ salts at 100 K. Dianion [2]2− is prepared from [2]1− by reduction with Na[Et3BH] and is observed to have a bent Fe-NO angle at 149.9(5)° in contrast to the linear configuration of Fe-NO in [2]1− (180.0°). The change from linear to bent binding mode for NO, an increase of more than 0.1 Å in the Fe-N bond length, and the relative invariance of the Fe-S distances for [2]2− versus [2]1− indicate that the NO ligand is the site of reduction. The [Et3NH]+ complex of [2]1− was also identified by crystallography and found to have hydrogen bonding contacts between [Et3NH]+ and the cyano nitrogen atom of an [mnt]2− ligand. Furthermore, relatively close S?S contacts (3.602-3.615 Å) occur between [2]1− anions, which pack together in an offset, head-to-head fashion. These S?S contacts are absent in the structure of [Et4N][2]. Infrared spectra show an energy decrease for, and a significant broadening of, the NO bond stretching absorption peak in [2]2−, which is consistent with a bent NO ligand sampling a range of conformations both by facile pivoting about the Fe-N axis and by a breathing of the Fe-NO angle.  相似文献   

8.
The solid-state reactions of UO3 and WO3 with M2CO3 (M=Na, K, Rb) at 650°C for 5 days result, accordingly the starting stoichiometry, in the formation of M2(UO2)(W2O8) (M=Na (1), K (2)), M2(UO2)2(WO5)O (M=K (3), Rb (4)), and Na10(UO2)8(W5O20)O8 (5). The crystal structures of compounds 2, 3, 4, and 5 have been determined by single-crystal X-ray diffraction using Mo(Kα) radiation and a charge-coupled device detector. The crystal structures were solved by direct methods and Fourier difference techniques, and refined by a least-squares method on the basis of F2 for all unique reflections. For (1), unit-cell parameters were determined from powder X-ray diffraction data. Crystallographic data: 1, monoclinic, a=12.736(4) Å, b=7.531(3) Å, c=8.493(3) Å, β=93.96(2)°, ρcal=6.62(2) g/cm3, ρmes=6.64(1) g/cm3, Z=4; 2, orthorhombic, space group Pmcn, a=7.5884(16) Å, b=8.6157(18) Å, c=13.946(3) Å, ρcal=6.15(2) g/cm3, ρmes=6.22(1) g/cm3, Z=8, R1=0.029 for 80 parameters with 1069 independent reflections; 3, monoclinic, space group P21/n, a=8.083(4) Å, b=28.724(5) Å, c=9.012(4) Å, β=102.14(1)°, ρcal=5.83(2) g/cm3, ρmes=5.90(2) g/cm3, Z=8, R1=0.037 for 171 parameters with 1471 reflections; 4, monoclinic, space group P21/n, a=8.234(1) Å, b=28.740(3) Å, c=9.378(1) Å, β=104.59(1)°, ρcal=6.13(2) g/cm3,  g/cm3, Z=8, R1=0.037 for 171 parameters with 1452 reflections; 5, monoclinic, space group C2/c, a=24.359(5) Å, b=23.506(5) Å, c=6.8068(14) Å, β=94.85(3)°, ρcal=6.42(2) g/cm3,  g/cm3, Z=8, R1=0.036 for 306 parameters with 5190 independent reflections. The crystal structure of 2 contains linear one-dimensional chains formed from edge-sharing UO7 pentagonal bipyramids connected by two octahedra wide (W2O8) ribbons formed from two edge-sharing WO6 octahedra connected together by corners. This arrangement leads to [UW2O10]2− corrugated layers parallel to (001). Owing to the unit-cell parameters, compound 1 probably contains similar sheets parallel to (100). Compounds 3 and 4 are isostructural and the structure consists of bi-dimensional networks built from the edge- and corner-sharing UO7 pentagonal bipyramids. This arrangement creates square sites occupied by W atoms, a fifth oxygen atom completes the coordination of W atoms to form WO5 distorted square pyramids. The interspaces between the resulting [U2WO10]2− layers parallel to plane are occupied by K or Rb atoms. The crystal structure of compound 5 is particularly original. It is based upon layers formed from UO7 pentagonal bipyramids and two edge-shared octahedra units, W2O10, by the sharing of edges and corners. Two successive layers stacked along the [100] direction are pillared by WO4 tetrahedra resulting in sheets of double layers. The sheets are separated by Na+ ions. The other Na+ ions occupy the rectangular tunnels created within the sheets. In fact complex anions W5O2010− are built by the sharing of the four corners of a WO4 tetrahedron with two W2O10 dimmers, so, the formula of compound 5 can be written Na10(UO2)8(W5O20)O8.  相似文献   

9.
Two new main group metal sulphides, [C10N4H26]0.5[InS2] (1) and [C10N4H26]0.5[GaS2] (2) have been prepared solvothermally in the presence of 1,4-bis(3-aminopropyl)piperazine and their crystal structures determined by single-crystal X-ray diffraction. Both compounds are isostructural and crystallise in the monoclinic space group P21/n (Z=4), with a=6.5628(5), b=11.2008(9), c=12.6611(9) Å and β=94.410(4)° (wR=0.035) for compound (1) and a=6.1094(5), b=11.2469(9), c=12.7064(10) Å and β=94.313(4)° (wR=0.021) for compound (2). The structure of [C10N4H26]0.5[MS2] (M=In,Ga) consists of one-dimensional [MS2] chains which run parallel to the crystallographic a axis and are separated by diprotonated amine molecules. These materials represent the first example of solvothermally prepared one-dimensional gallium and indium sulphides.  相似文献   

10.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

11.
A nonmetal pentaborate [C6H13N2][B5O6(OH)4] (1) has been synthesized by 1,4-diazabicyclo[2.2.2] octane (DABCO) and boric acid, and characterized by single-crystal X-ray diffraction, FTIR, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in the monoclinic system with space group Cc (no. 9), a=10.205(2) Å, b=14.143(3) Å, c=11.003(2) Å, β=113.97(3)°, V=1451.1(5) Å3, Z=4. The anionic units, [B5O6(OH)4], are interlinked via hydrogen bonding to form a three-dimensional (3D) supramolecular network containing large channels, in which the protonated [C6H13N2]+ cations are located. Second-harmonic generation (SHG) measurements on the powder samples reveal that 1 exhibits SHG efficiency approximately 0.9 times that of potassium dihydrogen phosphate (KDP).  相似文献   

12.
A series of novel octahedral nickel(II) dithiocarbamate complexes involving bidentate nitrogen-donor ligands (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) or a tetradentate ligand (cyclam = 1,4,8,11-tetraazacycloteradecane) of the composition [Ni(BzMetdtc)(phen)2]ClO4 (1), [Ni(Pe2dtc)(phen)2]ClO4 (2), [Ni(Bzppzdtc)(phen)2]ClO4 · CHCl3 (3), [Ni(Bzppzdtc)(phen)2](SCN) (4), [Ni(BzMetdtc)(bpy)2]ClO4 · 2H2O (5), [Ni(Pe2dtc)(cyclam)]ClO4 (6), [Ni(BzMetdtc)2(cyclam)] (7), [Ni(Bz2dtc)2(cyclam)] (8) and [Ni(Bz2dtc)2(phen)] (9) (BzMetdtc = N,N-benzyl-methyldithiocarbamate(1-) anion, Pe2dtc = N,N-dipentyldithiocarbamate(1-) anion, Bz2dtc = N,N-dibenzyldithiocarbamate(1-) anion, Bzppzdtc = 4-benzylpiperazinedithiocarbamate(1-) anion), have been synthesized. Spectroscopic (electronic and infrared), magnetic moment and molar conductivity data, and thermal behaviour of the complexes are discussed. Single crystal X-ray analysis of 3 and 8 confirmed a distorted octahedral arrangement in the vicinity of the nickel atom with a N4S2 donor set. They represent the first X-ray structures of such type complexes. The catalytic influence of complexes 2, 3, 6, and 7 on graphite oxidation was studied and discussed.  相似文献   

13.
Two uranyl tellurates, AgUO2(HTeO5) (1) and Pb2UO2(TeO6) (2), were synthesized under hydrothermal conditions and were structurally, chemically, and spectroscopically characterized. 1 crystallizes in space group Pbca, a=7.085(2) Å, b=11.986(3) Å, c=13.913(4) Å, V=1181.5(5) Å3, Z=8; 2 is in P2(1)/c, a=5.742(1) Å, b=7.789(2) Å, c=7.928(2) Å, V=90.703(2) Å3, and Z=2. These are the first structures reported for uranyl compounds containing tellurate. The U6+ cations are present as (UO2)2+ uranyl ions that are coordinated by O atoms to give pentagonal and square bipyramids in compounds 1 and 2, respectively. The structural unit in 1 is a sheet consisting of chains of edge-sharing uranyl pentagonal bipyramids that are one bipyramid wide, linked through the dimers of TeO6 octahedra. In 2, uranyl square bipyramids share each of their equatorial vertices with different TeO6 octahedra, giving a sheet with the autunite-type topology. Sheets in 1 and 2 are connected through the low-valence cations that are located in the interlayer region. The structures of 1 and 2 are compared to those of uranyl compounds containing octahedrally coordinated cations.  相似文献   

14.
Two novel Ni(II) complexes {[Ni(en)2(pot)2]0.5CHCl3} (3) {pot = 5-phenyl-1,3,4-oxadiazole-2-thione} (1) and [Ni(en)2](3-pytol)2 (4) {3-pytol = 5-(3-pyridyl)-1,3,4-oxadiazole-2-thiol} (2) have been synthesized using en as coligand. The metal complexes have been characterized by physical and analytical techniques and also by single crystal X-ray studies. The complexes 3 and 4 crystallize in monoclinic system with space group P21/a and P121/c, respectively. The complex 3 has a slightly distorted octahedral geometry with trans (pot) ligands while 4 has a square planar geometry around the centrosymmetric Ni(II) center with ionically linked trans (3-pytol) ligands. The π?π (face to face) interaction plays an important role along with hydrogen bondings to form supramolecular architecture in both complexes.  相似文献   

15.
A series of fourteen octahedral nickel(IV) dithiocarbamato complexes of the general formula [Ni(ndtc)3]X·yH2O {ndtc stands for the appropriate dithiocarbamate anion, X stands for ClO4 (1-8; y = 0) or [FeCl4] (9-14; y = 0 for 9-12, 1 for 13 and 0.5 for 14} was prepared by the oxidation of the corresponding nickel(II) complexes, i.e. [Ni(ndtc)2], with NOClO4 or FeCl3. The complexes, involving a high-valent NiIVS6 core, were characterized by elemental analysis (C, H, N, Cl and Ni), UV-Vis and FTIR spectroscopy, thermal analysis and magnetochemical and conductivity measurements. The X-ray structure of [Ni(hmidtc)3][FeCl4] (9) was determined {it consists of covalently discrete complex [Ni(hmidtc)3]+ cations and [FeCl4] anions} and this revealed slightly distorted octahedral and tetrahedral geometries within the complex cations, and anions, respectively. The Ni(IV) atom is six-coordinated by three bidentate S-donor hexamethyleneiminedithiocarbamate anions (hmidtc), with Ni-S bond lengths ranging from 2.2597(5) to 2.2652(5) Å, while the shortest Ni···Cl and Ni···Fe distances equal 4.1043(12), and 6.2862(6) Å, respectively. Moreover, the formal oxidation state of iron in [FeCl4] as well as the coordination geometry in its vicinity was also proved by 57Fe Mössbauer spectroscopy in the case of 9.  相似文献   

16.
[2-(Me2NCH2)C6H4]HgCl (1) was prepared by reacting HgCl2 with [2-(Me2NCH2)C6H4]Li in diethyl ether. The reactions of 1 with the sodium or ammonium salt of the appropriate thiophosphinato ligand, in 1:1 molar ratio, afford the isolation of [2-(Me2NCH2)C6H4]Hg[S(S)PR2] [R=Me (2), Et (3), Ph (4)], [2-(Me2NCH2)C6H4]Hg[S(O)PPh2] (5) and [2-(Me2NCH2)C6H4]Hg[S(S)P(OiPr)2] (6). The compounds were investigated by IR and multinuclear NMR (1H, 13C and 31P) spectroscopy. The molecular structures of 1 and 4 were determined by single-crystal X-ray diffraction. Due to the strong intramolecular coordination of the N atom of the pendant CH2NMe2 arm [Hg(1)-N(1) 2.764(6) and 2.725(4) Å in 1 and 4, respectively] both compounds exhibit a T-shaped (C,N)HgX core in the molecular unit, with almost linear arrangement of the covalent bonds [C(1)-Hg(1)-Cl(1) 176.93(18)° in 1, and C(1)-Hg(1)-S(1) 169.54(16)° in 4]. The crystals of 1 contain discrete monomeric molecules, while the crystals of 4 contain dimer associations built through asymmetric bridging dithiophosphinato ligands [Hg(1)-S(1) 2.3911(16) Å, Hg(1)?S(2a) 3.102(2) Å], thus resulting in an overall pseudo-trigonal bipyramidal (or seesaw) (C,N)HgS2 core, with the nitrogen atom and the weekly bonded sulfur atom in equatorial positions [N(1)-Hg(1)?S(2a) 82.01(10)°].  相似文献   

17.
The reactions between PhHgCl or PhHgAc and M[(XPR2)(YPR′2)N] (M=Na, K; X, Y=O, S; R, R′=Me, Ph, OEt), in 1:1 molar ratio, have been investigated. PhHg[(XPR2)(YPR′2)N] derivatives were isolated as microcrystalline powders and were characterised using IR and NMR (1H, 13C and 31P) spectroscopy and mass spectrometry. The molecular structure of PhHg[(OPR2)(SPPh2)N] [R=Me (1), Ph (2)] was investigated by X-ray diffraction. In the monomeric unit, PhHg[(OPR2)(SPPh2)N], the mercury atom forms the primary bonds with the carbon of the phenyl group and the sulfur atom of the phosphorus ligand [Hg(1)-S(1) 2.405(1) Å for 1, 2.398(2) Å for 2]. These primary bonds are significantly deviated from the expected linear arrangement [C(1)-Hg(1)-S(1) 166.4(2)° for 1, 165.0(2)° for 2]. Both compounds exhibit dimeric associations in the crystal through S,O-bridging organophosphorus ligands [Hg(1)-O(1) 2.556(4) Å for 1, 2.588(4) Å for 2], thus resulting in a distorted T-shaped arrangement of the CHgSO coordination core.. The formation of a 12-membered Hg2O2S2P4N2 ring with different conformation in 1 and 2, respectively, results in different additional chalcogen atoms being in the proximity of the metal atom. Weak transannular Hg?O [2.753(4) Å] are also established in 1, leading to a tricyclic ladder structure with a planar central Hg2O2 ring.  相似文献   

18.
Reactions of [Pt2(μ-Cl)2(C8H12OMe)2] (1) (C8H12OMe = 8-methoxy-cyclooct-4-ene-1-yl) with various anionic chalcogenolate ligands have been investigated. The reaction of 1 with Pb(Spy)2 (HSpy = pyridine-2-thiol) yielded a binuclear complex [Pt2(Spy)2(C8H12OMe)2] (2). A trinuclear complex [Pt3(Spy)4(C8H12OMe)2] (3) was isolated by a reaction between 2 and [Pt(Spy)2]n. The reaction of 1 with HSpy in the presence of NaOMe generated 2 and its demethylated oxo-bridged tetranuclear complex [Pt4(Spy)4(C8H12-O-C8H12)2] (4). Treatment of 1 with ammonium diisopropyldithiophosphate completely replaced C8H12OMe resulting in [Pt(S2P{OPri}2)2] (5), whereas non-rigid 5-membered chelating ligand, Me2NCH2CH2E, produced mononuclear complexes [Pt(ECH2CH2NMe2)(C8H12OMe)] (E = S (6), Se (7)). These complexes have been characterized by elemental analyses, NMR (1H, 13C{1H}, 195Pt{1H}) and absorption spectroscopy. Molecular structures of 2, 3, 4, 5 and 7 were established by single crystal X-ray diffraction analyses. Thermolysis of 2, 6 and 7 in HDA gave platinum nanoparticles.  相似文献   

19.
The preparation, crystal structure and magnetic properties of a new oxalate-containing copper(II) chain of formula {[(CH3)4N]2[Cu(C2O4)2] · H2O}n (1) [(CH3)4N+ = tetramethylammonium cation] are reported. The structure of 1 consists of anionic oxalate-bridged copper(II) chains, tetramethylammoniun cations and crystallization water molecules. Each copper(II) ion in 1 is surrounded by three oxalate ligands, one being bidentate and the other two exhibiting bis-bidenate coordination modes. Although all the tris-chelated copper(II) units from a given chain exhibit the same helicity, adjacent chains have opposite helicities and then an achiral structure results. Variable-temperature magnetic susceptibility measurements of 1 show the occurrence of a weak ferromagnetic interaction through the oxalate bridge [J = +1.14(1) cm−1, the Hamiltonian being defined as H = –JnmSi · Sj]. This value is analyzed and discussed in the light of available magneto-structural data for oxalate-bridged copper(II) complexes with the same out-of-plane exchange pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号