首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The rate constants of the hydrogen abstraction reactions of CF3CHFCF3 + H (R1) and CF3CF2CHF2 + H (R2) have been calculated by means of the dual-level direct dynamics method. Optimized geometries and frequencies of stationary points and extra points along the minimum-energy path (MEP) are obtained at the MPW1K/6-311+G(d,p) level, and the classical energetic information is further corrected with the interpolated single-point energy (ISPE) approach by the G3(MP2) level of theory. Using the canonical variational transition state theory (CVT) with small-curvature tunneling corrections (SCT), the rate constants are evaluated over a wide temperature range of 200-2000 K. The calculated CVT/SCT rate constants are in good agreement with available experimental values. It is found that the variational effect is very small and almost negligible over the whole temperature region. However, the small-curvature tunneling correction plays an important role in the lower temperature range. Furthermore, the heats of formation of species CF3CF2CHF2 (SC1 or SC2) and CF3CF2CF2 are studied using isodesmic reactions to further elucidate the thermodynamic properties.  相似文献   

2.
The kinetic properties of the hydrogen abstraction reactions of CF3CH2F + F → CF3CHF + HF (R1) and CF3CH2Cl + F → CF3CHCl + HF (R2) have been studied by dual-level direct dynamics method. Optimized geometries and frequencies of all the stationary points and extra points along the minimum-energy path (MEP) were obtained at the B3LYP/6-311 + G(2d,2p) level. Two complexes with energies less than that of the reactants were located in the reactant side of each reaction. The energy profiles were further refined with the interpolated single-point energies (ISPE) method at the G3(MP2) level of theory. Using canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT) method, the rate constants were evaluated over a wide temperature range of 200–2,000 K. Our calculations have shown that C–H bond activity decreases when one hydrogen atom of CF3CH3 is substituted by a fluorine atom, than when substituted with a chlorine atom. This is in good agreement with the experimental results.  相似文献   

3.
The potential energy surface for the reaction of the CF3O radicals with CO was investigated. The geometries and vibrational frequencies of the reactants, transition states, intermediates, and products were calculated at the UB3LYP/6-311+G(2d,p), UB3LYP/6-311+G(3df,2p) and UMP2/6-311+G(2d,p) levels of theory. The energies were improved by using the G2M(CC2) and G3B3 methods. The calculation suggests the reaction proceeds via either the fluorine abstraction of CF3O by CO to produce FCO + CF2O with a high energy barrier or the barrierless association of the reactants to form the trans-CF3OCO intermediate. The trans-CF3OCO is predicted to undergo subsequent isomerization to cis-CF3OCO or dissociate directly to the products FCO + CF2O and CF3 + CO2. The collisional stabilization of trans-CF3OCO is dominant at room temperature, while trans-CF3OCO isomerizing to cis-CF3OCO followed by dissociating to CF3 + CO2 is accessible when temperature rises. The reason for only trans-CF3OCO without cis-CF3OCO observable in Ashen’s experiment [S.V. Ahsen, J. Hufen, H. Willner, J.S. Francisco, Chem. Eur. J. 8 (2002) 1189] is cis-CF3OCO can be produced only via the isomerization of trans-CF3OCO, and its yield is inappreciable at a low experimental temperature. The enthalpies of formation for the two conformations of CF3OCO have been deduced: (trans-CF3OCO) = −196.25 kcal mol−1, (trans-CF3OCO) = −197.46 kcal mol−1, (cis-CF3OCO) = −193.64 kcal mol−1, and (cis-CF3OCO) = −194.90 kcal mol−1.  相似文献   

4.
The hydrogen abstraction reactions of CF3CF2CFH2 and CF3CFHCF2H with OH radicals and Cl atoms have been studied theoretically by a dual-level direct dynamics method. Two stable conformers of CF3CF2CFH2 with C s and C 1 symmetries and all possible abstraction channels for each reaction are all taken into consideration. Optimized geometries and frequencies of all the stationary points and extra points along minimum-energy path (MEP) have been computed at the BB1K/6-31+G(d, p) level of theory. To refine the energy profile of each reaction channel, single point energy calculations have been performed by the BMC-CCSD method. The rate constants are evaluated by canonical variational transition state theory (CVT) with the small-curvature tunneling correction method (SCT) over a wide temperature range of 200–1,000 K. The detailed branching ratios of four reactions are discussed. The good agreement found between our theoretical rate constants and the available experimental data suggests that the present approach could provide a reliable prediction for the CF3CFHCF2H + Cl reaction about which there is little experimental information. The kinetic calculations show that the SCT effect plays an important role in all channels. In addition, in order to further reveal the thermodynamic properties, the enthalpies of formation of the reactants (CF3CF2CFH2 and CF3CFHCF2H) and the product radicals (CF3CF2CFH, CF3CFCF2H, and CF3CFHCF2) are evaluated by applying isodesmic reactions at both BMC-CCSD//BB1K/6-31+G(d, p) and MC-QCISD//BB1K/6-31+G(d, p) levels of theory.  相似文献   

5.
The infrared absorptions associated with the two CF stretching fundamentals of CF2Cl+ and CF2Br+ have been identified in studies of the matrix-isolated products of the interaction of excited argon atoms with CF2Cl2, CF2ClBr, and CF2Br2. The exceptionally high values of the CF stretching frequencies obtained in these experiments are consistent with the implications of previous experimental and theoretical studies.  相似文献   

6.
The trifluoromethylation reactions of (CF3)2Hg, CF3I and (CF3)2Te with cyclohexene, benzene and pyridine are compared under similar conditions. Photochemical as well as thermal reactions result in an increase of the reactivity in the series (CF3)2Hg < CF3I ? (CF3)2Te. The yields and the kind of products vary depending on the time of irradiation and the temperature. In all cases the best yields are obtained from the thermal reactions with (CF3)2Te. With cyclohexene only trifluoromethylated addition products are observed. The substitution reactions with pyridine yield a mixture of isomeric trifluoromethylpyridines. (CF3)2Hg and CF3I react with benzene to yield only benzotrifluoride C6H5CF3. The main product of the reaction of (CF3)2Te with benzene is also benzotrifluoride; in addition to this the disubstituted bis(trifluoromethyl)benzene isomers and trifluoromethyl- cyclohexadienes are formed. 1H, 19F n.m.r. and mass spectra are described.  相似文献   

7.
The oxidation of CF2CFBr by molecular O2, initiated by CF3OF, has been studied at 273, 253.5, 239 and 218 K. The initial pressure of CF3OF was varied between 0.9 and 2.4 Torr, that of CF2CFBr between 11.5 and 30.7 Torr and that of O2 between 42.5 and 100.7 Torr. The main product was CF2BrC(O)F (yields 81-95% based on the CF2CFBr consumed). Minor amounts of C(O)F2 and C(O)FBr and traces of bromotrifluoroethene epoxide were also formed. The reaction is a chain reaction with bromine atoms as chain carriers. Its basic steps are: the thermal generation of CF3O radical by abstraction of fluorine atom from CF3OF, chain initiation by addition of CF3O to the double bond of alkene, leading, in presence of O2, to the formation of bromine atom and chain propagation by the reaction of bromine atom with CF2CFBr, originating CF2BrCFBrO radical. The predominant fate of the latter is the bromine atom extrusion with CC bond scission playing the minor role. The full mechanism is postulated.  相似文献   

8.
Graphite intercalation compounds (GICs) containing the cyclo-hexafluoropropane-1,3-bis(sulfonyl)amide anion, [CF2(CF2SO2)2N], are prepared for the first time. Stages 2 and 3 GICs are obtained by electrochemical oxidation of graphite in a nitromethane electrolyte. Gallery heights of 0.85-0.86 nm are determined by powder X-ray diffraction, and the intercalate anion orientation within the intercalate galleries is modeled using an energy minimized anion structure. GIC compositions are determined by thermogravimetric, fluorine and nitrogen analyses. The chemical preparation and bifluoride displacement reactions are compared with a GIC containing the linear bis(trifluoromethanesulfonyl)amide anion, [(CF3SO2)2N].  相似文献   

9.
Ab initio calculations employing an extended 4-31G basis set have been applied to the highly fluorinated molecules, CF3O2H, CF3O2F and CF2(OF)2. Partial geometry optimizations have also been carried out on these molecules allowing a comparison between theory and the recently completed gas-phase electron diffraction results. The O-O bond distance in CF3O2 H is found to be longer (by 0.02 Å) than the corresponding bond in CF3O2F while the CO bond is found to be shorter (by 0.02 Å) in CF3O2H. The OF bond in CF3O2F is found to be longer (by 0.03–0.04 Å) than the corresponding bond in CF3OF or F2O. Torsional barriers have been computed for CF3O2H and CF3O2F with the aid of Fourier analysis of the potential curves. CF3O2H is found to have a torsional potential about the peroxide bond rather similar to that found for H2O2 while in CF3O2F the cis and trans barriers are predicted to be much larger (14.6 and 8.4 kcal mol?1, respectively). The threefold barrier to rotation of the CF3 group in CF3O2F is predicted to be 4.4 kcal mol?1. Various conformations of CF2(OF)2 have also been studied with conformations consistent with the operation of the gauche-effect being most stable. Bond separation energies and molecular properties have also been computed for these molecules.  相似文献   

10.
Reactions of the fluorinated amines (CF3)2NH, CF3N(OCF3)H, CF3N[OCF(CF3)2]H, CF3NHF and SF5NHF with the strong acid HF/AsF5 form the corresponding ammonium salts Rf1Rf2NH2+AsF6? and RfNFH2+ AsF6? in high yield. [Rf1=CF3, Rf2=CF3, CF3O, (CF3)2CFO; Rf=CF3, SF5] The colorless crystalline solids are stable for prolonged periods at 22°C in sealed FEP containers. They have dissociation pressures at 22°C ranging from ~5 torr (RfNFH2+ AsF6?) to ~50 torr [CF3N(OCF3)H2+AsF6?]. 19F NMR and Raman spectroscopy were used to identify the compounds.  相似文献   

11.
Reaction rate coefficients have been measured at 295 K for both CF3 and CF2 with atomic and molecular fluorine. The reaction between CF3 and F was studied over a gas number density range of (2.4–23)×1016 cm–3 with helium as the bath gas. The measured rate coefficient increased from (1.1–1.7)×10–11 cm3 s–1 as the gas number density increased over this range. In contrast to this relatively small change in rate coefficient with gas number density, the rate coefficient for CF2+F increased from (0.4–2.3)×10–12 cm3 s–1 as the helium gas number density increased from (3.4–28.4)×1016 cm–3. Even for the highest bath gas number density employed, the rate coefficient was still more than an order of magnitude lower than earlier measurements of this coefficient performed at comparable gas number densities.Both these association reactions are examined from the standpoint of the Gorin model for association of radicals and use is made of unimolecular dissociation theory to examine the expected dependence on gas number density. The calculations reveal that CF3+F can be explained satisfactorily in these terms but CF2+F is not well described by the simple Gorin model for association.CF3 was found to react with molecular fluorine with a rate coefficient of (7±2)×10–14 cm3 s–1 whereas only an upper limit of 2×10–15 cm3 s–1 could be placed on the rate coefficient for the reaction between CF2 and F2. The values obtained for this set of reactions mean that the reaction between CF3 and F will play an important role in plasmas containing CF4. The high rate coefficient will mean that, under certain conditions, this particular reaction will control the amount of CF4 consumed. On the other hand, the much lower rate coefficient for reactions between CF2 and F means that CF2 will attain much higher concentrations than CF3 in plasmas where these combination reactions are dominant.  相似文献   

12.
Experiments have been carried out on the oxidation of CF3CFH2 (HFC-134a). Reaction was initiated by continuous photolysis of F2 in the near-ultraviolet. The F atoms produced abstracted a hydrogen atom from CF3CFH2 initiating oxidation in gas mixtures containing O2 and made up to a total pressure of 700 torr with N2. Product yields were measured using Fourier-transform infrared (FTIR) spectroscopy. Experiments were performed with several different partial pressures of O2 present, and at three temperatures; 298, 323, and 357 K. The major products were HC(O)F, CF3C(O)F, and CF3O3CF3, consistent with H atom abstraction by O2 and CC bond scission being the dominant loss processes for CF3CFHO radicals: CF3CFHO+02 → CF3C(O)F+HO2 (4a) CF3CFHO+M → CF3+HC(O)F+M (4b) The following expression was derived for the ratio of rate constants for these reactions: k4a/k4b=(3.8±1.6)×10−24 exp[(2400±500)/T]cm3 molecule−1 (viii) The main fate of the CF3 radicals was formation of CF3O3CF3 and small amounts of CF3OH were detected. The results of the present experiments in which F atoms were used to initiate reaction are in good agreement with those of previous studies in which Cl atoms were employed to initiate the oxidation of HFC-134a. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 541–554, 1998  相似文献   

13.
In this article, we report our detailed mechanistic study on the reactions of cyclic-N3 with NO, NO2 at the G3B3//B3LYP/6-311+G(d) and CCSD(T)/aug-cc-pVTZ//QCISD/6-311+G(d)+ZPVE levels; the reactions of cyclic-N3 with Cl2 was studied at the G3B3//B3LYP/6-311+G(d) and CCSD(T)/aug-cc-pVTZ//QCISD/6-31+G(d)+ZPVE levels. Both of the singlet and triplet potential-energy surfaces (PESs) of cyclic-N3 + NO, cyclic-N3 + NO2 and the PES of cyclic-N3 + Cl2 have been depicted. The results indicate that on singlet PESs cyclic-N3 can undergo the barrierless addition–elimination mechanism with NO and NO2 forming the respective dominant products N2 + 1cyclic-NON and 1NNO(O) + N2. Yet the two reactions on triplet PESs are much less likely to take place under room temperature due to the high barriers. For the cyclic-N3 + Cl2 reaction, a Cl-abstraction mechanism was revealed that results in the product cyclic-N3Cl + Cl with an overall barrier as high as 14.7 kcal/mol at CCSD(T)/aug-cc-pVTZ//QCISD/6-31+G(d)+ZPVE level. So the cyclic-N3 radical could be stable against Cl2 at low temperatures in gas phase. The present results can be useful for future experimental investigation on the title reactions.  相似文献   

14.
The potential energy surface for the CF3O2 + OH reaction has been theoretically investigated using the DFT (B3LYP/6-311G(d,p)) level of theory. Both singlet and triplet potential energy surfaces are investigated. The reaction mechanism on the triplet surface is simple. However, the reaction mechanism on the singlet surface is more complicated. It is revealed that the formation of CF3O + HO2 is the dominant channel on the triplet surface. The potential energy surface (PES) for this reaction has been given according to the relative energies calculated at the DFT/B3LYP/6-311G(d,p) level. Because this reaction involves both triplet and singlet states, triplet–singlet intersystem crossing (ISC) crossing also have been investigated in this paper.  相似文献   

15.
The potential energy surface for the reaction of CF3S with CO is calculated at the G4//B3LYP/6-311++G(d,p) level of theory. The results show that F-abstraction and addition-elimination mechanisms are involved, and the latter one is dominant thermodynamically and kinetically. The dominant channel is the reactant addition to form CF3SCO, and then decomposes to CF3 + OCS. While the direct F-abstraction channel and CF3SCO isomerization channel are not significant for the title reaction due to higher barriers involved. The comparisons among four reactions of CX3Y + CO (X = H, F; and Y = O, S) are made to imply the similar and different properties and reactivities of the same family elements and the F- and S-substituted derivatives.  相似文献   

16.
The reactions of OH (OD) radicals with CF2ClCClFH (R1), CF2ClCCl2H (R2), CFCl2CClFH (R3), and CFCl2CCl2H (R4) have been investigated theoretically by a dual-level direct dynamics method. The optimized geometries and frequencies of the stationary points are calculated at the MPW1K/6-311+G(d,p) level. To improve the reaction enthalpy and potential barrier of each reaction channel, the single-point energy calculation is made by the MC-QCISD method. The enthalpies of formation of the species CF2ClCClFH, CF2ClCCl2H, CFCl2CClFH, CFCl2CCl2H, CF2ClCClF, CF2ClCCl2, CFCl2CClF, and CFCl2CCl2 are evaluated by two sets of isodesmic reactions. Using canonical variational transition state theory (CVT) with the small-curvature tunneling correction (SCT) method, the rate constants of OH and OD radicals with CF2ClCClXH (X = F, Cl) and CFCl2CClXH (X = F, Cl) are evaluated over a wide temperature range of 100–2,000 K at the MC-QCISD//MPW1K/6-311+G(d,p) level. The calculated CVT/SCT rate constants are consistent with available experimental data. The results show that the tunneling correction has an important contribution in the calculation of rate constants at lower temperatures. For the above-mentioned four reactions, the kinetic isotope effects are also calculated. Finally, the effect of fluorine or chlorine substitution on reactivity of the C–H bond is discussed.  相似文献   

17.
The reaction of N2O with CO, catalyzed by Fe+(C6H6) and producing N2 and CO2, has been investigated at the UB3LYP/6-311+G(d) level. The computation results revealed that the reaction of Fe+(C6H6), N2O and CO, is an O-atom abstraction mechanism. For the reaction channels, the geometries and the vibrational frequencies of all species have been calculated and the frequency modes analysis also have been given to elucidate the reaction mechanism. On the basis for geometry optimizations, the thermodynamic data of these reactions channels have been calculated using the statistical theory at 295.15 K and pressure of 0.35 Torr. Using Eyring transition state theory with Wigner correction, the activation thermodynamic data, rate constant and frequency factors for the these reaction channels also have been given. The results showed that CO and N2O do not react without catalyst and Fe+(C6H6) can excellently mediate the reaction of N2O and CO.  相似文献   

18.
The insertion of (CF3)2CO into the PH bond of MenH3?nP yields MenH2?nPC(CF3)2OH and MenH1?nP[C(CF3)2OH]2 (n=O, 1), respectively [1]. MeP[C(CF3)2OH]2 rearranges giving the diphosphine [MePOCH(CF3)2]2 and the phosphorane MeP[OCH(CF3)2]4. Me2PH reacts with (CF3)2CO forming several products, e.g. MePF[OCH(CF3)2]2 and Me2PPMe2 [1]. The phosphines tBu(R)PH(R=Me, tBu), however, add (CF3)2CO giving rise to the phosphinites tBu(R)POCH(CF3)2, which furnish stable phosphonium salts upon treating with MeI. (CF3)2CO inserts into the SH bond of RSH to yield RSC(CF3)2OH (R=H,Me,Ph), which were reacted with MeI, too. Reacting SCl2 with LiOCH(CF3)2 gives S[OCH(CF3)2]2 which is oxidised by chlorine to the sulfurane ClS[OCH(CF3)2]3 [2]. The sulfurane is able to transfer (CF3)2CHO groups to phosphorus (III) compounds, e.g. P[OCH(CF3)2]3 and Me3P yielding P[OCH(CF3)2]5 and [Me3POCH(CF3)2]+Cl?. ClS[OCH(CF3)2]3 gives a stable salt upon reaction with SbCl5, like ClP[OCH(CF3)2]4. The mechanisms for these reactions are discussed.  相似文献   

19.
The fluorination of CF2ClSCl with AgF2 yields CF2ClSF3 together with CF3SF3 and CF3SF5. CF2ClSF3 is also formed when CF2ClSCl reacts with BrF3 which is adsorbed at HgF2. CF2ClS(O)F results from the mild hydrolysis reaction of CF2ClSF3 with glass walls. The new compounds were characterised by their NMR and mass spectra, CF2ClS(O)F also by its IR spectrum. The volatilities of the compounds were derived from codistillation diagrams. - Furthermore, previously unreported mass spectra of CF3SF3 and CF3SF5 are given.  相似文献   

20.
Potential energy surface (PES) for the reactions of XO (X = F, Cl and Br) with CH3SO and CH3SO2 have been calculated at MP2/6-311++G(d, p)//B3LYP/6-311++G(d, p) level. It is revealed that all the reactions take place on both singlet and triplet surfaces. The reaction mechanisms of XO (X = F, Cl and Br) with CH3SO and CH3SO2 are similar: the hydrogen abstraction channel of singlet-state PES, which has the overall negative activation energy, should be the dominant channel and CH2SO (CH2SO2) + HOX should be the main products. The reactions of CH3SO (CH3SO2) with XO become thermodynamically favored in the sequence of FO, ClO and BrO. The topological analysis of electronic density shows that a four-member-ring structure appears in the dominant reaction pathway, it turns to three-member-ring structure via a T-shaped structure and the ring structure disappears as the reaction proceeds. Furthermore, the scope of the structure transition region, the appeared position of the four-member-ring structure and the position of T-shaped structure correlated well to the atom which linked to the four-member-ring structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号