首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove that for any fixed the generating function of the projection of the set of integer points in a rational -dimensional polytope can be computed in polynomial time. As a corollary, we deduce that various interesting sets of lattice points, notably integer semigroups and (minimal) Hilbert bases of rational cones, have short rational generating functions provided certain parameters (the dimension and the number of generators) are fixed. It follows then that many computational problems for such sets (for example, finding the number of positive integers not representable as a non-negative integer combination of given coprime positive integers ) admit polynomial time algorithms. We also discuss a related problem of computing the Hilbert series of a ring generated by monomials.

  相似文献   


2.
In this paper we consider the solution of certain convex integer minimization problems via greedy augmentation procedures. We show that a greedy augmentation procedure that employs only directions from certain Graver bases needs only polynomially many augmentation steps to solve the given problem. We extend these results to convex N-fold integer minimization problems and to convex 2-stage stochastic integer minimization problems. Finally, we present some applications of convex N-fold integer minimization problems for which our approach provides polynomial time solution algorithms.  相似文献   

3.
Description of 2-integer continuous knapsack polyhedra   总被引:1,自引:0,他引:1  
In this paper we discuss the polyhedral structure of several mixed integer sets involving two integer variables. We show that the number of the corresponding facet-defining inequalities is polynomial on the size of the input data and their coefficients can also be computed in polynomial time using a known algorithm [D. Hirschberg, C. Wong, A polynomial-time algorithm for the knapsack problem with two variables, Journal of the Association for Computing Machinery 23 (1) (1976) 147–154] for the two integer knapsack problem. These mixed integer sets may arise as substructures of more complex mixed integer sets that model the feasible solutions of real application problems.  相似文献   

4.
 We study Graver test sets for linear two-stage stochastic integer programs and show that test sets can be decomposed into finitely many building blocks whose number is independent on the number of scenarios of the stochastic program. We present a finite algorithm to compute the building blocks directly, without prior knowledge of test set vectors. Once computed, building blocks can be employed to solve the stochastic program by a simple augmentation scheme, again without explicit knowledge of test set vectors. Finally, we report preliminary computational experience. Received: March 14, 2002 / Accepted: March 27, 2002 Published online: September 27, 2002 Key words. test sets – stochastic integer programming – decomposition methods Mathematics Subject Classification (2000): 90C15, 90C10, 13P10  相似文献   

5.
6.
7.
A specialization of the dual simplex method is developed for solving the linear programming (LP) knapsack problem subject to generalized upper bound (GUB) constraints. The LP/GUB knapsack problem is of interest both for solving more general LP problems by the dual simplex method, and for applying surrogate constraint strategies to the solution of 0–1 Multiple Choice integer programming problems. We provide computational bounds for our method of o(n logn), wheren is the total number of problem variables. These bounds reduce the previous best estimate of the order of complexity of the LP/GUB knapsack problem (due to Witzgall) and provide connections to computational bounds for the ordinary knapsack problem.We further provide a variant of our method which has only slightly inferior worst case bounds, yet which is ideally suited to solving integer multiple choice problems due to its ability to post-optimize while retaining variables otherwise weeded out by convex dominance criteria.  相似文献   

8.
There have been extensive studies on non-uniform Gabor bases and frames in recent years. But interestingly there have not been a single example of a compactly supported orthonormal Gabor basis in which either the frequency set or the translation set is non-uniform. Nor has there been an example in which the modulus of the generating function is not a characteristic function of a set. In this paper, we prove that in the one dimension and if we assume that the generating function g(x) of an orthonormal Gabor basis is supported on an interval, then both the frequency and the translation sets of the Gabor basis must be lattices. In fact, the Gabor basis must be the trivial one in the sense that |g(x)|=c(x) for some fundamental interval of the translation set. We also give examples showing that compactly supported non-uniform orthonormal Gabor bases exist in higher dimensions.  相似文献   

9.
We consider the bounded integer knapsack problem (BKP) , subject to: , and xj{0,1,…,mj},j=1,…,n. We use proximity results between the integer and the continuous versions to obtain an O(n3W2) algorithm for BKP, where W=maxj=1,…,nwj. The respective complexity of the unbounded case with mj=, for j=1,…,n, is O(n2W2). We use these results to obtain an improved strongly polynomial algorithm for the multicover problem with cyclical 1’s and uniform right-hand side.  相似文献   

10.
11.
A. Sebő 《Combinatorica》1988,8(1):103-116
Graphs for which the set oft-joins andt-cuts has the max-flow-min-cut property, i.e. for which the minimal defining system of thet-join polyhedron is totally dual integral, have been characterized by Seymour. An extension of this problem isto characterize the (uniquely existing) minimal totally dual integral defining system (Schrijver-system) of an arbitrary t-join polyhedron. This problem is solved in the present paper. The main idea is to uset-borders, a generalization oft-cuts, to obtain an integer minimax formula for the cardinality of a minimumt-join. (At-border is the set of edges joining different classes of a partition of the vertex set intot-odd sets.) It turns out that the (uniquely existing) strongest minimax theorem involves just this notion.On leave from Eötvös Loránd University and Computer and Automation Institute, Budapest.Supported by Sonderforschungsbereich 303 (DFG), Institut für Operations Research, Universität Bonn, W. Germany  相似文献   

12.
A cost allocation problem arising from the Steiner Tree (ST) problem in networks is analyzed. This cost allocation problem is formulated as a cost cooperative game in characteristic function form, referred to as theST-game. The class ofST games generalizes the class of minimum cost spanning tree games which were used in the literature to analyze a variety of cost allocation problems. In general, the core of anST-game may be empty. We construct an efficient Core Heuristic to compute a good lower bound on the maximum fraction of the total cost that can be distributed among users while satisfying the core constraints. Based on the Core Heuristic, we also provide a sufficient condition for a givenST not to be optimal for the linear programming relaxation of an integer programming formulation of theST problem. The Core Heuristic was implemented and tested on 76 data sets from the literature (Wong's, Aneja's and Beasley's Steiner tree problems). Core points were found for 69 of these cases, and points close to the core were computed in the others.  相似文献   

13.
Downward Sets and their separation and approximation properties   总被引:1,自引:1,他引:0  
We develop a theory of downward subsets of the space I, where I is a finite index set. Downward sets arise as the set of all solutions of a system of inequalities xI,ft(x)0 (tT), where T is an arbitrary index set and each f t (tT) is an increasing function defined on I. These sets play an important role in some parts of mathematical economics and game theory. We examine some functions related to a downward set (the distance to this set and the plus-Minkowski gauge of this set, which we introduce here) and study lattices of closed downward sets and of corresponding distance functions. We discuss two kinds of duality for downward sets, based on multiplicative and additive min-type functions, respectively, and corresponding separation properties, and we give some characterizations of best approximations by downward sets. Some links between the multiplicative and additive cases are established.  相似文献   

14.
We examine connections between A-hypergeometric differential equations and the theory of integer programming. In the first part, we develop a hypergeometric sensitivity analysis for small variations of constraint constants with creation operators and b-functions. In the second part, we study the indicial polynomial (b-function) along the hyperplane xi=0 via a correspondence between the optimal value of an integer programming problem and the roots of the indicial polynomial. Gröbner bases are used to prove theorems and give counter examples.  相似文献   

15.
Given an integer polyhedron , an integer point , and a point , the primal separation problem is the problem of finding a linear inequality which is valid for P I , violated by x *, and satisfied at equality by . The primal separation problem plays a key role in the primal approach to integer programming. In this paper we examine the complexity of primal separation for several well-known classes of inequalities for various important combinatorial optimization problems, including the knapsack, stable set and travelling salesman problems.Received: November 2002, Revised: March 2003,  相似文献   

16.
This paper is based on a recent work by Kojima which extended sums of squares relaxations of polynomial optimization problems to polynomial semidefinite programs. Let and be a finite dimensional real vector space and a symmetric cone embedded in ; examples of and include a pair of the N-dimensional Euclidean space and its nonnegative orthant, a pair of the N-dimensional Euclidean space and N-dimensional second-order cones, and a pair of the space of m × m real symmetric (or complex Hermitian) matrices and the cone of their positive semidefinite matrices. Sums of squares relaxations are further extended to a polynomial optimization problem over , i.e., a minimization of a real valued polynomial a(x) in the n-dimensional real variable vector x over a compact feasible region , where b(x) denotes an - valued polynomial in x. It is shown under a certain moderate assumption on the -valued polynomial b(x) that optimal values of a sequence of sums of squares relaxations of the problem, which are converted into a sequence of semidefinite programs when they are numerically solved, converge to the optimal value of the problem. Research supported by Grant-in-Aid for Scientific Research on Priority Areas 16016234.  相似文献   

17.
Four lifting theorems are derived for the symmetric travelling salesman polytope. They provide constructions and state conditions under which a linear inequality which defines a facet of then-city travelling salesman polytope retains its facetial property for the (n + m)-city travelling salesman polytope, wherem 1 is an arbitrary integer. In particular, they permit a proof that all subtour-elimination as well as comb inequalities define facets of the convex hull of tours of then-city travelling salesman problem, wheren is an arbitrary integer.  相似文献   

18.
The role of 0–1 programming problems having monotone or regular feasible sets was pointed out in [6]. The solution sets of covering and of knapsack problems are examples of monotone and of regular sets respectively. Some connections are established between prime implicants of a monotone or a regular Boolean function on the one hand, and facets of the convex hullH of the zeros of on the other. In particular (Corollary 2) a necessary and sufficient condition is given for a constraint of a covering problem to be a facet of the corresponding integer polyhedron. For any prime implicantP of, a nonempty familyF(P) of facets ofH is constructed. Proposition 17 gives easy-to-determine sharp upper bounds for the coefficients of these facets when is regular. A special class of prime implicants is described for regular functions and it is shown that for anyP in this class,F(P) consists of one facet ofH, and this facet has 0–1 coefficients. Every nontrivial facet ofH with 0–1 coefficients is obtained from this class.  相似文献   

19.
Consider a nonempty convex set in m which is defined by a finite number of smooth convex inequalities and which admits a self-concordant logarithmic barrier. We study the analytic center based column generation algorithm for the problem of finding a feasible point in this set. At each iteration the algorithm computes an approximate analytic center of the set defined by the inequalities generated in the previous iterations. If this approximate analytic center is a solution, then the algorithm terminates; otherwise either an existing inequality is shifted or a new inequality is added into the system. As the number of iterations increases, the set defined by the generated inequalities shrinks and the algorithm eventually finds a solution of the problem. The algorithm can be thought of as an extension of the classical cutting plane method. The difference is that we use analytic centers and convex cuts instead of arbitrary infeasible points and linear cuts. In contrast to the cutting plane method, the algorithm has a polynomial worst case complexity of O(Nlog 1/) on the total number of cuts to be used, where N is the number of convex inequalities in the original problem and is the maximum common slack of the original inequality system.  相似文献   

20.
We prove that scalar-valued polynomials are weakly continuous on limited sets and that, as in the case of linear mappings, every -valued polynomial maps limited sets into relatively compact ones. We also show that a scalar-valued polynomial whose derivative is limited is weakly sequentially continuous.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号