首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 846 毫秒
1.
A microbial biosensor for 2-phenylethanol (2-PE) based on the bacteria Gluconobacter oxydans was developed and applied in monitoring of a biotechnological process. The cells of G. oxydans were immobilized within a disposable polyelectrolyte complex gel membrane consisting of sodium alginate, cellulose sulphate and poly(methylene-co-guanidine) attached onto a miniaturized Clark oxygen electrode, forming whole cell amperometric biosensor. Measured changes in oxygen concentration were proportional to changes in 2-PE concentration. The biosensor sensitivity was 864 nA mM−1 (RSD = 6%), a detection limit of 1 μM, and the biosensor response towards 2-PE was linear in the range 0.02–0.70 mM. The biosensor preserved 93% of its initial sensitivity after 7 h of continuous operation and exhibited excellent storage stability with loss of only 6% of initial sensitivity within two months, when stored at 4 °C. The developed system was designed and successfully used for an off-line monitoring of whole course of 2-PE biooxidation process producing phenylacetic acid (PA) as industrially valuable aromatic compound. The biosensor measurement did not require the use of hazardous organic solvent. The biosensor response to 2-PE was not affected by interferences from PA and phenylacetaldehyde at concentrations present in real samples during the biotransformation and the results were in a very good agreement with those obtained via gas chromatography.  相似文献   

2.
H. Parham  N. Rahbar 《Talanta》2009,80(2):664-7942
A new, sensitive, fast and simple method using magnetic iron oxide nanoparticles (MIONs), as an adsorbent has been developed for extraction, preconcentration and determination of traces of fluoride ions. The determination method is based on the discoloration of Fe(III)-SCN complex with extracted fluoride ions which was subsequently monitored spectrophotometrically at λmax = 458 nm. Various parameters affecting the adsorption of fluoride by the MIONs have been investigated, such as pH of the solution, type, volume and concentration of desorbing reagent, amount of adsorbent and interference effects. A linear response for the determination of fluoride was achieved in the concentration range of 0.040-1.250 μg mL−1. The limit of detection (LOD) and limit of quantification (LOQ) for fluoride based on 3 times and 10 times the standard deviation of the blank (3Sb, 10Sb) were 0.015 and 0.042 μg mL−1 (n = 20) for fluoride ion, respectively. A preconcentration factor of 50 was achieved in this method. The proposed procedure has been applied for determination of fluoride concentration in various water samples. The results obtained from this method were successfully compared with those provided by standard SPADNS method.  相似文献   

3.
Gha-Young Kim 《Talanta》2007,71(1):129-135
A poly(vinyl alcohol) film cross-linked with glutaraldehyde (PVA-GA) was introduced to the surface of a tyrosinase-based carbon paste electrode. The coated PVA-GA film was beneficial in terms of increasing the stability and reproducibility of the enzyme electrode. The electrode showed a sensitive current response to the reduction of the o-quinone, which was the oxidation product of phenol, by the tyrosinase, in the presence of oxygen. The effects of the PVA and PVA-GA coating, the pH, and the GA:PVA ratio on the current response were investigated. The sensitivity of the PVA-GA-Tyr electrode was 130.56 μA/mM (1.8 μA/μM cm2) and the linear range of phenol was 0.5-100 μM. At a higher concentration of phenol (>100 μM), the current response showed the Michaelis-Menten behavior. Using the PVA-GA-Tyr electrode, a two-electrode system was tested as a prototype sensor for portable applications.  相似文献   

4.
Tyrosinase from a plant source Amorphophallus companulatus was immobilized on eggshell membrane using glutaraldehyde. Among the three different approaches used for immobilization, activation of eggshell membrane by glutaraldehyde followed by enzyme adsorption on activated support could stabilize the enzyme tyrosinase and was found to be effective. Km and Vmax values for dopamine hydrochloride calculated from Lineweaver-Burk plot were 0.67 mM and 0.08 mM min−1, respectively. Studies on effect of pH showed retention of more than 90% activity over a pH range 5.0-6.5. Membrane bound enzyme exhibited consistent activity in the temperature range 20-45 °C. Shelf life of immobilized tyrosinase system was found to be more than 6 months when stored in phosphate buffer at 4 °C. An electrochemical biosensor for dopamine was developed by mounting the tyrosinase immobilized eggshell membrane on the surface of glassy carbon electrode. Dopamine concentrations were determined by the direct reduction of biocatalytically liberated quinone species at −0.19 V versus Ag/AgCl (3 M KCl). Linearity was observed within the range of 50-250 μM with a detection limit of 25 μM.  相似文献   

5.
A novel tyrosinase biosensor based on hydroxyapatite nanoparticles (nano-HA)-chitosan nanocomposite has been developed for the detection of phenolic compounds. The uniform and size controlled nano-HA was synthesized by hydrothermal method, and its morphological characterization was examined by transmission electron microscope (TEM). Tyrosinase was then immobilized on a nano-HA-chitosan nanocomposite-modified gold electrode. Electrochemical impedance spectroscopy and cyclic voltammetry were used to characterize the sensing film. The prepared biosensor was applied to determine phenolic compounds by monitoring the reduction signal of the biocatalytically produced quinone species at −0.2 V (vs. saturated calomel electrode). The effects of the pH, temperature and applied potential on the biosensor performance were investigated, and experimental conditions were optimized. The biosensor exhibited a linear response to catechol over a wide concentration range from 10 nM to 7 μM, with a high sensitivity of 2.11 × 103 μA mM−1 cm−2, and a limit of detection down to 5 nM (based on S/N = 3). The apparent Michaelis-Menten constants of the enzyme electrode were estimated to be 3.16, 1.31 and 3.52 μM for catechol, phenol and m-cresol, respectively. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

6.
Wu L  McIntosh M  Zhang X  Ju H 《Talanta》2007,74(3):387-392
Thionine had strong interaction with carbon nanofiber (CNF) and was used in the non-covalent functionalization of carbon nanofiber for the preparation of stable thionine-CNF nanocomposite with good dispersion. With a simple one-step electrochemical polymerization of thionine-CNF nanocomposite and alcohol oxidase (AOD), a stable poly(thionine)-CNF/AOD biocomposite film was formed on electrode surface. Based on the excellent catalytic activity of the biocomposite film toward reduction of dissolved oxygen, a sensitive ethanol biosensor was proposed. The ethanol biosensor could monitor ethanol ranging from 2.0 to 252 μM with a detection limit of 1.7 μM. It displayed a rapid response, an expanded linear response range as well as excellent reproducibility and stability. The combination of catalytic activity of CNF and the promising feature of the biocomposite with one-step non-manual technique favored the sensitive determination of ethanol with improved analytical capabilities.  相似文献   

7.
In this article, we report a new method that involves headspace single-drop microextraction and ion chromatography for the preconcentration and determination of fluoride. The method lies in the in situ hydrogen fluoride generation and subsequent sequestration into an alkaline microdrop (15 μL) exposed to the headspace above the stirred aqueous sample. The NaF formed in the drop was then determined by ion chromatography. The influences of some crucial single-drop microextraction parameters such as the extraction temperature, extraction time, sample stirring speed, sulphuric acid concentration and ionic strength of the sample, on extraction efficiency were investigated. In the optimal condition, an enrichment factor of 97 was achieved in 15 min. The calibration working range was from 10 μg L−1 to 2000 μg L−1 (R2 = 0.998), and the limit of detection (signal to noise ratio of 3) was 3.8 μg L−1 of fluoride. Finally, the proposed method was successfully applied to the determination of fluoride in different milk samples. The recoveries of fluoride (at spiked concentrations of 200 μg L−1 and 600 μg L−1 into milk) in real samples ranged from 96.9% to 107.7%. Intra-day precision (N = 3) in terms of peak area, expressed as relative standard deviation, was found to be within the range of 0.24-1.02%.  相似文献   

8.
Chronoamperometric assays based on tyrosinase and glucose oxidase (GOx) inactivation have been developed for the monitoring of Cr(III) and Cr(VI). Tyrosinase was immobilized by crosslinking on screen-printed carbon electrodes (SPCEs) containing tetrathiafulvalene (TTF) as electron transfer mediator. The tyrosinase/SPCTTFE response to pyrocatechol is inhibited by Cr(III). This process, that is not affected by Cr(VI), allows the determination of Cr(III) with a capability of detection of 2.0 ± 0.2 μM and a reproducibility of 5.5%. GOx modified screen-printed carbon platinised electrodes (SPCPtEs) were developed for the selective determination of Cr(VI) using ferricyanide as redox mediator. The biosensor was able to discriminate two different oxidation states of chromium being able to reject Cr(III) and to detect the toxic species Cr(VI). Chronoamperometric response of the biosensor towards glucose decreases with the presence of Cr(VI), with a capability of detection of 90.5 ± 7.6 nM and a reproducibility of 6.2%. A bipotentiostatic chronoamperometric biosensor was finally developed using a tyrosinase/SPCTTFE and a GOx/SPCPtE connected in array mode for the simultaneous determination of Cr(III) and Cr(VI) in spiked tap water and in waste water from a tannery factory samples.  相似文献   

9.
A flow injection method with on-line solid sample dissolution was developed for the determination of fluoride in phosphate rock. The fluoride was selectively leached (98-102.4 % recovery) from a 50-mg powdered phosphate rock sample with 0.50 M citric acid. Using the zone sampling technique the fluoride in the buffered leachate was determined by injecting 87 μL into the carrier stream using a fluoride ion-selective electrode detector. The sensing element of the electrode was housed in a home-made sleeve-type flow-through cell. On-line solid sample digestion with 0.50 M citric acid at 55 °C resulted in minimum dissolution of interfering iron and aluminum ions with improved accuracy and calibration linearity. The incorporation of relatively high level of fluoride in the carrier stream (40 μg mL−1) facilitated the determination of high levels of fluoride in phosphate rock (up to 4.1%) with out the need for excessive on-line dilution.The optimized flow system was applied for the determination of fluoride in phosphate rocks samples and a reference material at a rate of nine samples per hour with a relative standard deviation (n = 5) of 2.95-4.0 %. Comparison of the proposed flow injection method with the standard method, which involves steam distillation from sulfuric acid solution and manual titration with thorium nitrate, showed no evidence of bias at the 95% confidence level.  相似文献   

10.
A tyrosinase (Tyr) screen-printed biosensor based on the electroreduction of enzymatically generated quinoid products was electrochemically characterized and optimized for determination of carbamates and organophosphorus pesticides. A composite electrode prepared by screen-printing a cobalt (II) phthalocyanine (CoPc) modified cellulose-graphite composite on a polycarbonate support was employed as electrochemical transducer. The Tyr biosensor was prepared by immobilization of enzyme on the composite electrode surface by cross-linking with glutaraldehyde and bovine serum albumin. Parameters affecting the biosensor response such as response time, enzyme loading, concentration and pH of the buffer solution were optimized utilizing catechol as substrate. The maximum response for o-quinone enzymatically generated was obtained after 2 min of reaction. A good reproducibility and high operational stability were found for Tyr biosensor (60 units) at 50 mM phosphate buffer, pH 6.50. Under these conditions, the useful lifetime of biosensor was 10 days. After 15 days, the biosensor could be used with 20% of the initial value. Inhibition studies on the o-quinone steady-state current (at −0.20 V versus Ag/AgCl) were performed to investigate the inhibition kinetics of the pesticides in the enzymatic activity of mushroom tyrosinase. The results shown that the methyl parathion and carbofuran can lead to competitive inhibition process of the enzyme, while diazinon and carbaryl act as mixed inhibitors. Linear relationships were found for methyl parathion (6-100 ppb), diazinon (19-50 ppb), carbofuran (5-90 ppb) and carbaryl (10-50 ppb). Analysis of natural river water samples spiked with 30 ppb of each pesticide showed recoveries between 92.50% and 98.50% and relative standard deviations of 2%.  相似文献   

11.
In this research, the graphene with excellent dispersity is prepared successfully by introducing gold nanoparticle to separate the individual sheets. Various techniques are adopted to characterize the prepared graphene and graphene-gold nanoparticle composite materials. This fabricated new composite material is used as the support material to construct a novel tyrosinase based biosensor for detection of bisphenol A (BPA). The electrochemical performances of the proposed new enzyme biosensor were investigated by differential pulse voltammetry (DPV) method. The proposed biosensor exhibited excellent performance for BPA determination with a wide linear range (2.5 × 10−3–3.0 μM), a highly reproducible response (RSD of 2.7%), low interferences and long-term stability. And more importantly, the calculated detection limit of the proposed biosensor was as low as 1 nM. Compared with other detection methods, this graphene-gold nanoparticle composite based tyrosinase biosensor is proved to be a promising and reliable tool for rapid detection of BPA for on-site analysis of emergency BPA related pollution affairs.  相似文献   

12.
Wang W  Zhang TJ  Zhang DW  Li HY  Ma YR  Qi LM  Zhou YL  Zhang XX 《Talanta》2011,84(1):71-77
A novel matrix, gold nanoparticles-bacterial cellulose nanofibers (Au-BC) nanocomposite was developed for enzyme immobilization and biosensor fabrication due to its unique properties such as satisfying biocompatibility, good conductivity and extensive surface area, which were inherited from both gold nanoparticles (AuNPs) and bacterial cellulose nanofibers (BC). Heme proteins such as horseradish peroxidase (HRP), hemoglobin (Hb) and myoglobin (Mb) were successfully immobilized on the surface of Au-BC nanocomposite modified glassy carbon electrode (GCE). The immobilized heme proteins showed electrocatalytic activities to the reduction of H2O2 in the presence of the mediator hydroquinone (HQ), which might be due to the fact that heme proteins retained the near-native secondary structures in the Au-BC nanocomposite which was proved by UV-vis and IR spectra. The response of the developed biosensor to H2O2 was related to the amount of AuNPs in Au-BC nanocomposite, indicating that the AuNPs in BC network played an important role in the biosensor performance. Under the optimum conditions, the biosensor based on HRP exhibited a fast amperometric response (within 1 s) to H2O2, a good linear response over a wide range of concentration from 0.3 μM to 1.00 mM, and a low detection limit of 0.1 μM based on S/N = 3. The high performance of the biosensor made Au-BC nanocomposite superior to other materials as immobilization matrix.  相似文献   

13.
Developing a biosensor which is capable of simultaneously monitoring l-Dopa levels in multiple samples besides requiring small reaction volume is of great value. The present study describes the detection of l-Dopa using tyrosinase enzyme extracted from Amorphophallus campanulatus and immobilized on the surface of the microplate wells. Among the different approaches used for immobilizing tyrosinase onto the microplate wells, glutaraldehyde treatment was found to be most effective. Besides enzyme activity, ESEM–EDS (environmental scanning electron microscope–energy dispersive system) and Atomic Force Microscopy (AFM) were also carried out to confirm the immobilization of tyrosinase enzyme onto the microplate well surface. This immobilized biocomponent was then integrated with an optical transducer for l-Dopa detection and it showed good reproducibility. The sensing property of the system was studied by measuring the initial rate of dopachrome formation at 475 nm. The calibration plot gave a linear range of detection from 10–1000 μM and the detection limit was calculated to be 3 μM. The immobilized biocomponent was stable for 41 days and was reused up to nine times. Spiked samples (blood plasma) were also analyzed using this biocomponent. This microplate based biosensor thus provides a convenient system for detection of multiple samples in a single run.  相似文献   

14.
A phenol biosensor was developed based on the immobilization of tyrosinase on the surface of modified magnetic MgFe2O4 nanoparticles. The tyrosinase was first covalently immobilized to core-shell (MgFe2O4-SiO2) magnetic nanoparticles, which were modified with amino group on its surface. The resulting magnetic bio-nanoparticles were attached to the surface of carbon paste electrode (CPE) with the help of a permanent magnet. The immobilization matrix provided a good microenvironment for the retaining of the bioactivity of tyrosinase. Phenol was determined by the direct reduction of biocatalytically generated quinone species at −150 mV versus SCE. The resulting phenol biosensor could reach 95% of steady-state current within 20 s and exhibited a high sensitivity of 54.2 μA/mM, which resulted from the high tyrosinase loading of the immobilization matrix. The linear range for phenol determination was from 1 × 10−6 to 2.5 × 10−4 M with a detection limit of 6.0 × 10−7 M obtained at a signal-to-noise ratio of 3. The stability and the application of the biosensor were also evaluated.  相似文献   

15.
Wu B  Zhang G  Shuang S  Choi MM 《Talanta》2004,64(2):546-553
A glucose biosensor using an enzyme-immobilized eggshell membrane and oxygen electrode for glucose determination has been fabricated. Glucose oxidase was covalently immobilized on an eggshell membrane with glutaraldehyde as a cross-linking agent. The glucose biosensor was fabricated by positioning the enzyme-immobilized eggshell membrane on the surface of a dissolved oxygen sensor. The detection scheme was based on the depletion of dissolved oxygen content upon exposure to glucose solution and the decrease in the oxygen level was monitored and related to the glucose concentration. The effect of glutaraldehyde concentration, pH, phosphate buffer concentration and temperature on the response of the glucose biosensor has been studied in detail. Common matrix interferents such as ethanol, d-fructose, citric acid, sodium benzoate, sucrose and l-ascorbic acid did not give significant interference. The resulting sensor exhibited a fast response (100 s), high sensitivity (8.3409 mg L−1 oxygen depletion/mmol L−1 glucose) and good storage stability (85.2% of its initial sensitivity after 4 months). The linear response is 1.0×10−5 to 1.3×10−3 mol L−1 glucose. The glucose content in real samples such as commercial glucose injection preparations and wines was determined, and the results were comparable to the values obtained from a commercial glucose assay kit based on a spectrophotometric method.  相似文献   

16.
The high sensitivity that can be attained using an enzymatic system and mediated by catechols has been verified by on-line interfacing of a rotating biosensor and continuous flow/stopped-flow/continuous-flow processing. Horseradish peroxidase, HRP, [EC 1.11.1.7], immobilized on a rotating disk, in presence of hydrogen peroxide catalyzed the oxidation of catechols, whose back electrochemical reduction was detected on glassy carbon electrode surface at −150 mV. Thus, when l-cysteine (Cys) or glutathione (GSH) was added to the solution, these thiol-containing compounds participate in Michael addition reactions with catechols to form the corresponding thioquinone derivatives, decreasing the peak current obtained proportionally to the increase of its concentration. Cys was used as the model thiol-containing compound for the study. The highest response for Cys was obtained around pH 7. This method could be used to determine Cys concentration in the range 0.05-90 μM (r = 0.998) and GSH concentration in the range 0.04-90 μM (r = 0.999). The determination of Cys and GSH were possible with a limit of detection of 0.7 and 0.3 nM, respectively, in the processing of as many as 25 samples per hour. Current response of the HRP-rotating biosensor is not affected by the oxidized form of GSH and Cys (glutathione disulfide, GSSG, and l-cystine, respectively), by sulfur-containing and alkyl-amino compounds such as methionine and lysine, respectively. The interferences from easily oxidizable species such as ascorbic acid and uric acid are lowest.  相似文献   

17.
This paper describes a study about the influence of microwave radiation using closed vessels on fluoride, chloride, nitrate and sulfate concentrations in aqueous media. The experiments were processed by heating water using PFA vessels and a microwave cavity oven, determining the anions by ion chromatography. The influence of the exposure time, the atmospheric composition, the kind of heating (water bath or microwave radiation) and the possible formation of hydrogen peroxide were investigated. The limits of quantification for fluoride, chloride, nitrate and sulfate were respectively of 0.17, 0.15, 0.55 and 0.57 μg L−1, and precision, expressed as RSD, was <4% for all considered anions. The hydrogen peroxide was quantified by spectrophotometry, and the limit of quantification and precision were 24 μg L−1 and <5% (n = 10), respectively. The results demonstrate a significant increase in the anion concentration levels (between 63 and 89%) when microwave heating was used in comparison with heating by water bath. In addition, these changes observed can be mainly attributed to the species transfers, either between gaseous (atmospheric gases) and liquid (water) phases for nitrate, or between vessels walls and water for fluoride, chloride and sulfate. Additionally, hydrogen peroxide concentration higher than 45 μg L−1 was determined when water was exposed to microwave radiation.  相似文献   

18.
The determination of diuron, atrazine, desisopropylatrazine (DIA) and desethylatrazine (DEA) were investigated using conductometric tyrosinase biosensor. Tyrosinase was immobilised on the biosensor sensitive part by allowing it to mix with bovine serum albumin (BSA) and then cross-linking in saturated glutaraldehyde (GA) vapour for 30 min. The determination of pollutants in a solution was performed by comparison of the output signal (i.e percentage of the enzymatic activity) of the biosensor before and after contact with pollutants. The measurement of the enzymatic activity was performed using 4-chlorophenol, phenol and catechol substrates and response times ranging from 1 to 5 min were observed. A 4-chlorophenol substrate was used to detect pesticides. A 30 min contact time of the biosensor in the pollutant solution was used. Under the experimental conditions employed, detection limits for diuron and atrazine were about 1 ppb and dynamic range of 2.3-2330 and 2.15-2150 ppb were obtained for diuron and atrazine, respectively. A relative standard deviation (n=3) of the output signal was estimated to be 5% and a slight drift of 1.5 μS h−1 was observed. The 90% of the enzyme activity was still maintained after 23 days of storage in a buffer solution at 4 °C.  相似文献   

19.
A novel inorganic-organic hybrid titania sol-gel nanocomposite film was prepared to fabricate a sensitive tyrosinase biosensor for the amperometric detection of trace phenolic compounds without additional electron mediators. Acetylacetone worked as a complexing ligand to chelate with Ti atom in the synthesis process, and the pH of the titania solution could be adjusted to the value which was optimum for retaining tyrosinase activity and such a membrane was stably attached on to the surface of a glassy carbon electrode (GCE). This titania matrix could supply a good environment for enzyme loading, which resulted in a high sensitivity of 15.78 μA μM−1 cm−2 for monitoring phenols with a detection limit of 1×10−8 M at a signal-to-noise ratio of 3. The TiO2 sol-gel derived biosensor exhibited a fast response less than 10 s and a good stability for more than 2 months.  相似文献   

20.
Sezgintürk MK  Dinçkaya E 《Talanta》2005,65(4):998-1002
In the work described here, a biosensor was developed for the determination of sulfite in food. Malva vulgaris tissue homogenate containing sulfite oxidase enzyme was used as the biological material. M. vulgaris tissue homogenate was crosslinked with gelatin using glutaraldehyde and fixed on a pretreated Teflon membrane. Sulfite was enzymatically converted to sulfate in the presence of the dissolved oxygen, which was monitored amperometrically. Sulfite determination was carried out by standard curves, which were obtained by the measurement of consumed oxygen level related to sulfite concentration. Several operational parameters had been investigated: the amounts of plant tissue homogenate and gelatin, percentage of glutaraldehyde, optimum pH and temperature. Also, some characterization studies were done. There was linearity in the range between 0.2 and 1.8 mM at 35 °C and pH 7.5. The results of real sample analysis obtained with the biosensor agreed well with the enzymatic reference method using spectrophotometric detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号