首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
In this work,we reported a simultaneous determination approach for Pb(II),Cd(II)and Zn(II)atμg L 1concentration levels using differential pulse stripping voltammetry on a bismuth film electrode(BiFE).The BiFE could be prepared in situ when the sample solution contained a suitable amount of Bi(NO)3,and its analytical performance was evaluated for the simultaneous determination of Pb(II),Cd(II)and Zn(II)in solutions.The determination limits were found to be 0.19μg L 1for Zn(II),and0.28μg L 1for Pb(II)and Cd(II),with a preconcentration time of 300 s.The BiFE approach was successfully applied to determine Pb(II),Cd(II)and Zn(II)in tea leaf and infusion samples,and the results were in agreement with those obtained using an atomic absorption spectrometry approach.Without Hg usage,the in situ preparation for BiFE supplied a green and acceptability sensitive method for the determination of the heavy metal ions.  相似文献   

2.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful and sensitive surface analytical technique for the determination of concentration and distribution of trace metals within biological systems at micrometer spatial resolution. LA-ICP-MS allows easy quantification procedures if suitable standard references materials (SRM) are available. In this work a new SRM-free approach of solution-based calibration method in LA-ICP-MS for element quantification in hair is described. A dual argon flow of the carrier gas and nebulizer gas is used. A dry aerosol produced by laser ablation (LA) of biological sample and a desolvated aerosol generated by pneumatic nebulization (PN) of standard solutions are carried by two different flows of argon as carrier or nebulizer gas, respectively and introduced separately in the injector tube of a special ICP torch, through two separated apertures. Both argon flows are mixed directly in the ICP torch. External calibration via defined standard solutions before analysis of single hair was employed as calibration strategy. A correction factor, calculated using hair with known analyte concentration (measured by ICP-MS), is applied to correct the different elemental sensitivities of ICP-MS and LA-ICP-MS. Calibration curves are obtained by plotting the ratio of analyte ion M+/34S+ ion intensities measured using LA-ICP-MS in dependence of analyte concentration in calibration solutions. Matrix-matched on-line calibration in LA-ICP-MS is carried out by ablating of human hair strands (mounted on a sticky tape in the LA chamber) using a focused laser beam in parallel with conventional nebulization of calibration solutions. Calibrations curves of Li, Na, Mg, Al, K, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Mo, Ag, Cd, I, Hg, Pb, Tl, Bi and U are presented. The linear correlation coefficients (R) of calibration curves for analytes were typically between 0.97 and 0.999. The limits of detection (LODs) of Li, V, Mn, Ni, Co, Cu, Sr, Mo, Ag, Ba, Cd, I, Hg, Pb, Bi and U in a single hair strand were in the range of 0.001-0.90 μg g−1, whereas those of Cr and Zn were 3.4 and 5.1 μg g−1, respectively. The proposed quantification strategy using on-line solution-based calibration in LA-ICP-MS was applied for biomonitoring (the spatial resolved distribution analysis) of essential and toxic metals and iodine in human hair and mouse hair.  相似文献   

3.
A novel chelating resin (poly-Cd(II)-DAAB-VP) was prepared by metal ion imprinted polymer (MIIP) technique. The resin was obtained by one pot reaction of Cd(II)-diazoaminobenzene-vinylpyridine with cross-linker ethyleneglycoldimethacrylate (EGDMA). Comparing with non-imprinted resin, the poly-Cd(II)-DAAB-VP has higher adsorption capacity and selectivity for Cd(II). The distribution ratio (D) values for the Cd(II)-imprinted resin show increase for Cd(II) with respect to both D values of Zn(II), Cu(II), Hg(II) and non-imprinted resin. The relatively selective factor (αr) values of Cd(II)/Cu(II), Cd(II)/Zn(II) and Cd(II)/Hg(II), are 51.2, 45.6, and 85.4, which are greater than 1. poly-Cd(II)-DAAB-VP can be used at least 20 times without considerable loss of adsorption capacity. Based on poly-Cd(II)-DAAB-VP packed columns, a highly selective solid-phase extraction (SPE) and preconcentration method for Cd(II) from aqueous solution was developed. The MIIP-SPE preconcentration procedure showed a linear calibration curve within concentration range from 0.093 to 30 μg l−1. The detection limit and quantification limit were 0.093 and 0.21 μg l−1 (3σ) for flame atomic absorption spectrometry (FAAS). The relative standard deviation of the eleven replicate determinations was 3.7% for the determination of 10 μg of Cd(II) in 100 ml water sample. Determination of Cd(II) in certified river sediment sample (GBW 08301) demonstrated that the interfering matrix had been almost removed during preconcentration. The column was good enough for Cd(II) determination in matrixes containing components with similar chemical property such as Cu(II), Zn(II) and Hg(II).  相似文献   

4.
The amino acid sequence MxCxxC is conserved in many soft-metal transporters that are involved in the control of the intracellular concentration of ions such as Cu(I), Hg(II), Zn(II), Cd(II), and Pb(II). A relevant task is thus the selectivity of the motif MxCxxC for these different metal ions. To analyze the coordination properties and the selectivity of this consensus sequence, we have designed two model peptides that mimic the binding loop of the copper chaperone Atx1: the cyclic peptide P(C) c(GMTCSGCSRP) and its linear analogue P(L) (Ac-MTCSGCSRPG-NH2). By using complementary analytical and spectroscopic methods, we have demonstrated that 1:1 complexes are obtained with Cu(I) and Hg(II), whereas 1:1 and 1:2 (M:P) species are successively formed with Zn(II), Cd(II), and Pb(II). The complexation properties of the cyclic and linear peptides are very close, but the cyclic compound provides systematically higher affinity constants than its unstructured analogue. The introduction of a xPGx motif that forms a type II beta turn in P(C) induces a preorganization of the binding loop of the peptide that enhances the stabilities of the complexes (up to 2 orders of magnitude difference for the Hg complexes). The affinity constants were measured in the absence of any reducing agent that would compete with the peptides and range in the order Hg(II) > Cu(I) > Cd(II) > Pb(II) > Zn(II). This sequence is thus highly selective for Cu(I) compared to the essential ion Zn(II) that could compete in vivo or compared to the toxic ions Cd(II) and Pb(II). Only Hg(II) may be an efficient competitor of Cu(I) for binding to the MxCxxC motif in metalloproteins.  相似文献   

5.
The radical copolymerization of acrylic acid with acrylamide was carried out at different monomer ratios in solution (DMF) at 60°C. The corresponding homopolymers were also synthesized to compare their metal ion binding abilities. All the copolymers were characterized by elemental analysis. The metal ion binding properties of these water-soluble polymers with Cu(II), Co(II), Ni(II), Cd(II), Zn(II), Pb(II), Hg(II), Fe(III), and Cr(III) ions were investigated in aqueous solution using the Liquid-Phase Polymer-Based Retention (LPR) technique. Poly(acrylic acid-co-acrylamide) showed a higher retention compared to the homopolymers for all the metal ions except of Hg(II), which was not retained. Besides, the retention of Cd(II) is higher than that an addition of the retention of both homopolymers. It may be attributed to a synergic effect. Maximum capacity for Cu(II) at pH 5.0 was determined to be 1 mmol g−1 (63.5 mg g−1). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2461–2467, 1997  相似文献   

6.
Accumulation of five heavy metal ions by five species of wood-rotting basidiomycetes during a 9-day cultivation was studied. Contents of Cd, Cu, Pb, and Zn were measured using ICP-MS; the amount of mercury was determined directly in solid samples using the Advanced Mercury Analyser. A standard operation procedure for the sample preparation and determination of metal content was developed and validated. Presence of Cd, Cu, Hg, and Pb decreased the accumulation of zinc by the fungi. The basidiomycete Pycnoporus cinnabarinus exhibited the highest metal binding capacity of all fungi tested.  相似文献   

7.
Summary The element contents of Cd, Co, Cu, Mn, Hg, Ni, Pb and Zn of three different types of sewage sludge were certified. The preparation, the homogeneity and the stability are reported. The certified contents as well as values for Cr and Se and for the aqua regia soluble contents of Cd, Cr, Co, Cu, Mn, Ni, Pb and Zn are given.
Zertifizierung von Schwermetallspuren (Cd, Co, Cu, Mn, Hg, Ni, Pb und Zn) in drei Klärschlammproben
Zusammenfassung In drei verschiedenen Klärschlammproben wurden die Elementgehalte an Cd, Co, Cu, Mn, Hg, Ni, Pb und Zn zertifiziert. Es wird berichtet über die Herstellung, Homogenität und Stabilität. Die zertifizierten Gehalte sowie der Gehalt von Cr, Se und der Gehalt an königswasserlöslichem Cd, Cr, Co, Cu, Mn, Ni, Pb und Zn werden angegeben.
  相似文献   

8.
2-Thiophenecarboxaldhyde is chemically bonded to silica gel surface immobilized monoamine, ethylenediamine and diethylenetriamine by a simple Schiff’s base reaction to produce three new SP-extractors, phases (I-III). The selectivity properties of these phases toward Hg(II) uptake as well as eight other metal ions: Ca(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) were extensively studied and evaluated as a function of pH of metal ion solution and equilibrium shaking time by the batch equilibrium technique. The data obtained clearly indicate that the new SP-extractors have the highest affinity for retention of Hg(II) ion. Their Hg(II) uptake in mmol g−1 and distribution coefficient as log Kd values are always higher than the uptake of any other metal ion along the range of pH used (pH 1.0-10.0). The uptake of Hg(II) using phase I was 2.0 mmol g−1 (log Kd 6.6) at pH 1.0 and 2.0. 1.8 mmol g−1 (log Kd 4.25), 1.6 mmol g−1 (log Kd 3.90) and 1.08 mmol g−1 (log Kd 3.37) at pH 3.0, 5.0 and 8.0, respectively. Selective separation of Hg(II) from the other eight coexisting metal ions under investigation was achieved successfully using phase I at pH 2.0 either under static or dynamic conditions. Hg(II) was completely retained while Ca(II), Co(II) and Cd(II) ions were not retained. Ni(II), Cu(II), Zn(II), Pb(II) and Fe(III) showed very low percentage retention values to be 0.74, 0.97, 3.5 and 6.3%, respectively. Moreover, the high recovery values (95.5 ± 0.5, 95.8 ± 0.5 and 99.0% ± 1.0) of percolating two liters of doubly distilled water, drinking tap water and Nile river water spiked with 5 ng/l of Hg(II) over 100 mg of phase I packed in a minicolumn and used as a thin layer enrichment bed demonstrate the accuracy and validity of the new SP-extractors for preconcentration of the ultratrace amount of spiked Hg(II) prior to the determination by borohydride generation atomic absorption spectrometry (AAS) with no matrix interference. The detection limit (3σ) for Hg(II) based on enrichment factor 1000 was 4.75 pg/ml. The precision (R.S.D.) obtained for different amounts of mercury was in the range 0.52-1.01% (N = 3) at the 25-100 ng/l level.  相似文献   

9.
The distribution patterns and the organ-specific accumulation trends of 10 trace metals (iron, manganese, zinc, copper, chromium, nickel, cobalt, lead, cadmium and silver) and 4 major elements (sodium, potassium, calcium and magnesium) in 10 different tissues (heart, muscle, kidney, stomach, intestine, liver, gill, gonads, white skin and dark skin) of a benthic fish species (Solea senegalensis) from a densely populated coastal area affected by anthropogenic activities, the Bay of Cadiz (SW Spain), have been investigated. High variability of metal concentrations among tissues were found for Ca, Fe, Zn, Cu, Pb and Ag. Factor analysis was applied to study this variability. Five principal components were found explaining the 92.95% of the total variance and similarities in behavioural patterns of bioaccumulation were described. They associated Mg, Cr, Ni and Mn to intestine and stomach tissues (PC1), Ag, Cu and Cd to liver (PC2), Zn, K and Co to gonads (PC3), Na, Fe and Pb to gill, heart and kidney tissues (PC4) and Ca, Pb and Mn to gill and dark skin (PC5). The metallic concentration in the sediment and water was also studied. The pollution in this area was found moderate with outstanding values of Zn, Cu and Pb (average values of 139, 50.4 and 75.6?mg?kg?1, respectively) in sediment and dissolved Cu (average value of 2.5?µg?L?1). Metal bioconcentration trends followed the order Zn?>?Cu?>?Cd?>?Pb for dissolved metals in seawater, Cu?>?Zn?>?Cd?>?Pb?≈?Mn?>?Fe?≈?Ni?≈?Co for metals associated to particulate matter and Zn?≈?Cu?>?Cd?>?Mn?>?Co?≈?Fe?>?Ni?≈?Pb?>?Cr for metals in the sediment. Higher values were found for copper in liver, zinc in gonads and lead in gill, showing the relationship between biotic and abiotic environment. In addition, Cd bioconcentration factors were found high in liver and gill showing the sensitivity of sole to this metal even at low concentrations.  相似文献   

10.
A novel dual-ligand reagent (2Z)-N,N′-bis(2-aminoethylic)but-2-enediamide, was synthesized and applied to prepare metal ion-imprinted polymers (IIPs) materials by ionic imprinted technique for selective solid-phase extraction (SPE) of trace Cd(II) from aqueous solution. In the first step, Cd(II) formed coordination linkage with the two ethylenediamine groups of the synthetic monomer. Then the complex was copolymerized with pentaerythritol triacrylate (crosslinker) in the presence of 2,2′-azobisisobutyronitrile as initiator. Subsequently, the imprinted Cd(II) was completely removed by leaching the dried and powdered materials particles with 0.5 M HCl. The obtained IIPs particles exhibited excellent selectivity for target ion. The distribution ratio (D) values of Cd(II)-IIPs for Cd(II) were greatly larger than that for Cu(II), Zn(II) and Hg(II). The relative selective factor (αr) values of Cd(II)/Cu(II), Cd(II)/Zn(II) and Cd(II)/Hg(II) were 25.5, 35.3 and 62.1. The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cd(II) was 32.56 and 6.30 mg g−1, respectively. Moreover, the times of adsorption equilibration and complete desorption were remarkably short. The prepared Cd(II)-IIPs were shown to be promising for solid-phase extraction coupled with inductively coupled plasma atomic emission spectrometry (ICP-AES) for the determination of trace Cd(II) in real samples. The precision (R.S.D.) and detection limit (3σ) of the method were 2.4% and 0.14 μg L−1, respectively. The column packed with Cd(II)-IIPs was good enough for Cd(II) separation in matrixes containing components with similar chemical behaviour such as Cu(II), Zn(II) and Hg(II).  相似文献   

11.
The study is conducted to investigate the spatial distribution, sources and ecological risk of seven heavy metals in surface sediments of Nansi Lake, Eastern China. A total of 29 samples were collected in surface sediments of Nansi Lake, and were analyzed for three nutrients (TN, TOC and TP), two major metals (Al and Fe), as well as seven trace metals (As, Cd, Cr, Cu, Hg, Pb and Zn). The mean concentrations of As, Cd, Cr, Cu, Hg, Pb, Zn, Fe and Al were 14.41, 0.22, 71.10, 30.1, 0.048, 29.14, 90.2, 30,816 and 70,653 mg kg?1, respectively, and the mean contents of these metals were higher than the background values with the exception of Cu and Fe. The spatial distribution indicated that the contents of all seven heavy metals were characterized by relatively higher contents in the upper lake than the lower lake. The hotspots with high values of As, Cd and Hg were associated with the river mouths, and the hotspots of Pb were mainly located around the dam in the central part, while no significant associations were displayed between spatial distribution of Cr, Cu, Zn and the river mouths. The mean enrichment factor (EF) values of As, Cd, Hg and Pb were 2.03, 2.93, 3.21 and 2.18, respectively, showing their moderate enrichment, while Cr, Cu and Zn with mean EF values of 1.19, 0.89 and 1.01 were deficiency to minimal enrichment. Multivariate and geostatistical analyses suggested that PC1 controlled by Cr, Cu and Zn was a lithogenic component, and come from parent rocks leaching. PC2 including Cd and partially Hg represented the factor from industrial wastewater discharge. PC3 showed elevated loadings of As and partially Cd, and could be attributed to the agricultural practices. While PC4 including Pb and partially Hg, was dominated by coal combustion. The results of potential ecological risk suggested that sediment environment of Nansi Lake suffered from high ecological risk.  相似文献   

12.
Summary The element contents of Cd, Cu, Hg, Ni, Pb and Zn of three types of soil were certified. The preparation, homogeneity and stability are reported. The certified contents as well as values for Co, Cr, Mn and Se and for the aqua regia soluble contents Cd, Cr, Cu, Mn, Ni, Pb and Zn are given.
Zertifizierung von Schwermetallspuren (Cd, Cu, Hg, Ni, Pb und Zn) in drei Bodenproben
Zusammenfassung In drei verschiedenen Bodenproben wurden die Elementgehalte an Cd, Cu, Hg, Ni, Pb und Zn zertifiziert. Es wird berichtet über die Bereitung, Homogenität und Stabilität. Die zertifizierten Gehalte sowie der Gehalt an Cr, Co, Mn und Se und der Gehalt an königswasserlöslichem Cd, Cr, Cu, Mn, Ni, Pb und Zn werden angegeben.
  相似文献   

13.
Inductively coupled plasma-mass spectrometry (ICP-MS) and neutron activation analysis (NAA) were employed in the determination of heavy metal concentrations in water, plant and sediment samples to assess the extent of heavy metal pollution in a river system which is located within an industrial zone. Elemental concentrations of As, Pb, Hg, Cr, Cu, Cd, Ni and Zn were measured in the samples. Statistical analysis was performed on the data obtained to look for trends in the pollution pattern of these elements on the river system. The trend in concentrations of heavy metals pollution in water samples is in the order of Zn > Cu > Ni > Cr > As > Pb > Hg > Cd, whereas in plants the order is Zn > Cr > Cu > Pb > Ni > As > Hg > Cd and in sediments Zn > Cu > Pb > Ni > As > Hg.  相似文献   

14.
An EDTA‐bonded conducting polymer modified electrode was prepared and characterized by FT‐IR. The modified electrode was used for the selective electrochemical analysis of various trace metal ions such as, Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Fe(II), Cd(II), and Zn(II) at the different pHs by linear sweep and square wave voltammetry. Dynamic ranges were obtained using square wave voltammetry from 0.1 μM to 10.0 μM for Co(II), Ni(II), Cd(II), Fe(II), and Zn(II) and 0.5 nM to 20 nM for Cu(II), Hg(II), and Pb(II) after 10 min of preconcentration. The detection limits were determined to be 0.1 nM, 0.3 nM, 0.4 nM, 50.0 nM, 60.0 nM, 65.0 nM, 80.0 nM, and 90.0 nM for Cu(II), Hg(II), Pb(II), Co(II), Ni(II), Cd(II), Fe(II), and Zn(II), respectively. The technique offers an excellent way for the selective trace determination of various heavy metal ions in a solution.  相似文献   

15.
Some metal complexes of DL–methionine were prepared in aqueous medium and characterized by different physico-chemical methods. Methionine forms 1:2 complexes with metal, M(II). The general empirical formula of the complexes is proposed as [(C5H10NO2S)2MII]; where MII = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II). All the complexes are extremely stable in light and air and optically inactive. Magnetic susceptibility data of the complexes demonstrate that they are high spin paramagnetic complex except Zn(II), Cd(II) and Hg(II) complexes. The bonding pattern in the complexes are similar to each other as indicated by electronic absorption spectra and FTIR spectral analysis. The current potential data, peak separation (AE) and the peak current ratio (ipa/ipc) of the (Mn, Cu and Cd) complexes indicate that the charge transfer processes are irreversible, the systems are diffusion controlled and also adsorptive controlled. The charge transfer rate constant of metals in their complexes are less than those in their metal salts at identical experimental conditions due to the coordination of metal with methionine.  相似文献   

16.
ABSTRACT: BACKGROUND: Copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) can pose serious threats to environmental health because they tend to bioaccumulate in terrestrial ecosystems. We investigated under field conditions the transfer of these heavy metals in a soil-plant-snail food chain in Banat area, Romania. The main goal of this paper was to assess the Roman snail (Helix pomatia) usefulness in environmental monitoring as bioindicator of heavy metal accumulation. Eight sampling sites, selected by different history of heavy metal (HM) exposure, were chosen to be sampled for soil, nettle leaves, and newly matured snails. This study also aimed to identify the putative effects of HM accumulation in the environment on phenotypic variability in selected shell features, which included shell height (SH), relative shell height (RSH), and whorl number (WN). RESULTS: Significantly higher amounts of HMs were accumulated in snail hepatopancreas and not in foot. Cu, Zn, and Cd have biomagnified in the snail body, particularly in the hepatopancreas. In contrast, Pb decreased when going up into the food chain. Zn, Cd, and Pb correlated highly with each other at all levels of the investigated food chain. Zn and Pb exhibited an effective soil-plant transfer, whereas in the snail body only foot Cu concentration was correlated with that in soil. There were significant differences among sampling sites for WN, SH, and RSH when compared with reference snails. WN was strongly correlated with Cd and Pb concentrations in nettle leaves but not with Cu and Zn. SH was independent of HM concentrations in soil, snail hepatopancreas, and foot. However, SH correlated negatively with nettle leaves concentrations for each HM except Cu. In contrast, RSH correlated significantly only with Pb concentration in hepatopancreas. CONCLUSIONS: The snail hepatopancreas accumulates high amounts of HMs, and therefore, this organ can function as a reliable biomarker for tracking HM bioavailability in soil. Long-term exposure to HMs via contaminated food might influence the variability of shell traits in snail populations. Therefore, our results highlight the Roman snail (Helix pomatia) potential to be used in environmental monitoring studies as bioindicator of HM pollution.  相似文献   

17.
《Analytical letters》2012,45(9):1807-1820
ABSTRACT

5-amino-1,3,4-thiadiazole-2-thiol groups attached on a silica gel surface have been used for adsorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II) and Zn(II) from aqueous solutions. The adsorption capacities for each metal ion were (in mmol.g?1): Cd(II)= 0.35, Co(II)= 0.10, Cu(II)= 0.15, Fe(III)= 0.20, Hg(II)= 0.46, Ni(II)= 0.16, Pb(II)= 0.13 and Zn(II)= 0.15. The modified silica gel was applied in the preconcentration and quantification of trace level metal ions present in water samples (river, and bog water).  相似文献   

18.
Thiacalix[4]aniline (4), a cyclic tetramer of p-tert-butylaniline bridged with four sulfides, extracted Au(III) and Pd(II) ions specifically from acidic solutions among 41 metal ions including soft metal ions such as Hg(II), Cd(II), Zn(II), Pb(II), and Cu(II).  相似文献   

19.
The compound 6,7-dihydro-3(H)-6-methyl-5-methoxy-7-oxo-vic-triazolo (4,5-d) pyrimidine (LH) has been characterized by IR, 1H-NMR and UV-visible spectroscopy. Furthermore, its acid behaviour in aqueous solutions at variable temperatures and ionic strengths have been studied.The stability constants of the complexes formed by LH with Cu(II), Zn(II), Cd(II) and Hg(II) metal ions at different ionic strengths and temperatures have been calculated by the method of Chabereck and Martell. From these data, the thermodynamic functions for the corresponding complexation processes have been obtained.  相似文献   

20.
Summary Clean and rapid analytical separation of microgram quantities of Ge(IV), Sn(II), Pb(II) and Zn(II), Cd(II), Hg(II) from their mixed solution has been made possible by ascending thin-layer chromatography using the solvent systems: (a)Isobutyl alcohol: Conc. HCl: Et-Me ketone and (b) Isobutyl alcohol: CH3COOH. For the evaluation of different metal ions, the resulting delineated spots as viewed in U.V. light were scooped out with the help of micro-vacuum cleaner and the collected material transferred to the paper set on the ring oven. Separate rings were obtained for individual metal ions and the computation of results having been made by ring colorimetry, using PTC and other chromogenic reagents.
Bestimmung von Ge(IV), Sn(II), Pb(II) und Zn(II), Cd(II), Hg(II) durch Ring-Colorimetrie nach Trennung durch Dünnschicht-Chromatographie

Détermination de Ge(IV), Sn(II), Pb(II) et de Zn(II), Cd(II), Hg(II) par colorimétrie annulaire après séparation par chromatographie sur couche mince
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号