首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A new flow injection spectrophotometric method is described for the simultaneous determination of silicate and phosphate. Effects on the sensitivity of the method of the wavelength, temperature, length of reaction coils, pump rates, acidity, sampling volume, concentration of the chromogenic reagent, etc. were also investigated. The optimum conditions were ascertained.The principle of the method is that total concentration of silicate plus phosphate is determined when a injected sample plug is passing through the first flow cell and then the concentration of silicate is serially) determined at a second flow cell of the same detector after continuously masking the yellow molybdophosphate in the sample zone. Finally, the concentration of phosphate is obtained by difference.Silicate and phosphate are determined in boiler water at power plants; 60-120 samples h−1 be analyzed. Determination ranges are 0.05-22 mg l−1 for silicate and 0.1-24 mg l−1 for phosphate. Relative standard deviations for metasilicate and orthophosphate were ≤1.2 and 1.3%, respectively. Recovery ranges of silicate and phosphate in the samples are 98-103%.  相似文献   

2.
A kinetic spectrophotometric procedure was developed for determination of submicromolar orthophosphate based on the reaction in which orthophosphate serves as a catalyst in the reduction of molybdenum, and the initial rate of molybdenum-blue formation (λmax = 780 nm) is proportional to the concentration of orthophosphate in the samples. The detection limit (3 × standard deviation of blank, n = 8) was 6 nM and the linear calibration ranged from 10 to 100 nM (r2 = 0.997). The precisions of this method were 3.3% at 10 nM and 5.4% at 50 nM (n = 8), respectively. Similar to other molybdate based methods, silica and arsenate in the samples can interfere with phosphate determination. The responses of silicate and arsenate were about 25% and 7% of that of orthophosphate, respectively, and their interferences were enhanced in the presence of phosphate in the samples due to the synergistic effect of phosphate with arsenate or silicate on the molybdate reagent.  相似文献   

3.
Leading-edge urban solid waste ashing plants use burning heat energy to obtain electrical power. Water fed to their boilers for conversion into steam should be highly pure in order to minimize corrosion, scaling and similar phenomena, which can lead to malfunctioning and a reduced useful life but can be avoided by proper management and control of the water supply. In this work, we developed a multiparameter monitor based on multisyringe sequential injection for the sequential determination of up to eight important parameters, namely: pH, specific and acid conductivity, hydrazine, ammonium, phosphate, silicate and total iron.Acid conductivity was determined by passing the sample through a cation-exchange resin in order to retain ammonium ion and release protons. This parameter was deemed the most accurate indicator of dissolved solids in boiler water. Chemical parameters were determined spectrophotometrically: hydrazine by reaction with p-dimethylaminobenzaldehyde, ammonium by the modified Berthelot reaction, iron with o-phenanthroline, and phosphate and silica by formation of a molybdoheteropoly blue dye in the presence of ascorbic acid as reductant. Use of the optimum chemical and physical operating conditions provided 3sblank detection limits of 0.01 mg l−1 N2H4, 0.13 mg l−1 NH4+, 0.04 mg l−1 Fe, 0.03 mg l−1 SiO2 and 0.05 mg l−1 PO43−, and relative standard deviations not greater than 2.5%. The methods integrated in the proposed monitor were successfully applied to real samples from the water-steam cycle at the Son Reus ashing plant in Palma de Mallorca (Spain).  相似文献   

4.
This paper describes a simultaneously performed two-/three-phase hollow-fiber-based liquid-phase microextraction (HF-LPME) method for the determination of aromatic amines with a wide range of pKa (−4.25 to 4.6) and log KOW (0.9–2.8) values in environmental water samples. Analytes including aniline, 4-nitroaniline, 2,4-dinitroaniline and dicloran were extracted from basic aqueous samples (donor phase, DP) into the microliter volume of organic membrane phase impregnated into the pores of the polypropylene hollow fiber wall, then back extracted into the acidified aqueous solution (acceptor phase, AP) filling in the lumen of the hollow fiber. The mass transfer of the analytes from the donor phase through the organic membrane phase into acceptor phase was driven by both the counter-coupled transport of hydrogen ions and the pH gradient. Afterwards, the hollow fiber was eluted with 50 μL methanol to capture the analytes from both the organic membrane and the acceptor phase. Factors relevant to the enrichment factors (EFs) were investigated. Under the optimized condition (DP: 100 mL of 0.1 M NaOH with 2 M Na2SO4; organic phase: di-n-hexyl with 8% trioctylphosphine oxide (TOPO); AP: 10 μL of 8 M HCl; extraction time of 80 min), the obtained EFs were 405–2000, dynamic linear ranges were 5–200 μg/L (R > 0.9976), and limits of detection were 0.5–1.5 μg/L. The presence of humic acid (0–25 mg/L dissolved organic carbon) had no significant effect on the extraction efficiency. The proposed procedure worked very well for real environmental water samples with microgram per liter level of analytes, and good spike recoveries (80–103%) were obtained.  相似文献   

5.
A chemiluminescence one-shot sensor for hydrogen peroxide is described. It is prepared by immobilization of cobalt chloride and sodium lauryl sulphate in hydroxyethyl cellulose matrix cast on a microscope cover glass. Luminol, sodium phosphate and the sample are mixed before use and applied on the membrane by a micropipette. The calibration graph is linear in the range 20-1600 μg/L, and the detection limit of the method (3σ) is 9 μg/L. A relative standard deviation of 4.5% was obtained for 100 μg/L H2O2 (n = 11). The sensor has been applied successfully to the determination of hydrogen peroxide in rainwater.  相似文献   

6.
The simultaneous spectrophotometric determination of phosphate and silicate ions in river water was examined by using ion-exclusion chromatography and post-column derivatization. Phosphate and silicate ions were separated by the ion-exclusion column packed with a polymethacrylate-based weakly acidic cation-exchange resin in the H+-form (TSKgel Super IC-A/C) by using ultra pure water as an eluent. After the post-column derivatization with molybdate and ascorbic acid, so-called molybdenum-blue, both ions were determined simultaneously by spectrophotometry. The effects of sulfuric acid, sodium molybdate and ascorbic acid concentrations and reaction coil length, which have relation to form the reduced complexes of molybdate and ions, on the detector response for phosphate and silicate ions were investigated. Under the optimized conditions (color-forming reactant, 50 mM sulfuric acid-10 mM sodium molybdate; reducing agent, 50 mM ascorbic acid; reaction coil length, 6 m), the calibration curves of phosphate and silicate ions were linear in the range of 50-2000 μg L−1 as P and 250-10,000 μg L−1 as Si. This method was successfully applied to water quality monitoring of Kurose-river watershed and it suggested that the effluent from a biological sewage treatment plant was significant source of phosphate ion in Kurose-river water.  相似文献   

7.
Santosh Kumar Verma 《Talanta》2007,71(4):1546-1552
The feasibility of employing diffuse reflectance Fourier transform infrared spectroscopy (DRS-FTIR) as a sensitive tool in the submicrogram level determination of sulphate (SO42−) was checked in this work. This paper presents the development of a new, rapid and precise analytical method for ppb levels of sulphate (SO42−) in environmental samples like coarse and fine aerosol particles, dry deposits and soil. The determination of submicrogram levels of sulphate is based on the selection of a quantitative analytical peak at 617 cm−1 among the three observed vibrational peaks and preparing calibration curve using different known concentrations of sulphate by diffuse reflectance-Fourier transform infra red spectrometric (DRS-FTIR) technique. Pre-weighed and ground IR grade KBr was used as substrate over which remarkably wide range of known concentration of sulphate was sprayed and dried. The dried sample was analysed by DRS-FTIR. Three calibration curves for three different concentration ranges of sulphate were prepared for samples containing low and relatively higher sulphate contents. The relative standard deviation (n = 8) for the sulphate concentration ranges, 2.5-35.5, 25.5-165, 55-1000 μg/0.5 g KBr, as used to prepare calibration curves, were 2.4%, 2.1% and 1.5%, respectively. The relative standard deviation for the sulphate concentration in real samples were found to be in the range, 3.11-5.76% (n = 16), 4.05-7.75% (n = 16) and 1.48-3.52% (n = 10) for aerosol, dry deposits and soil, respectively. The LOD of the method is 0.20 μg/g SO42−. The F- and t-tests were performed to check the analytical quality assurance test. The noteworthy feature of the reported method is the non-interference of any of the associated anions and cations. The results were compared with that of ion-chromatographic method with high degree of acceptability. The method can be applied in wide concentration ranges. A method for sulphate determination was introduced that did not require pretreatment of samples. This method employed the direct determination of the sulphate. The method is reagent less, nondestructive, very fast, repeatable, and accurate and has high sample throughput value.  相似文献   

8.
Simple, easy to use and selective method of Al(III) sorption-spectroscopic (SS) determination was proposed. For this purpose, silica modified with tridecyloctadecylammonium chloride(SGII) using adsorption technique and glass slide modified with thin silica-poly(dimethyldiallyl-ammonium chloride) (SGI) composite film obtained by sol-gel technique were worked out. It was shown that lumogallion (LG) easily absorbs on SGI and SGII. Obtained sorbents SGIII and SGIV, respectively, were used for aluminum(III) determination by diffuse reflectance and spectrophotometric methods. The ranges of determination were (mg L−1): (0.08-0.54), sr ≤ 0.13, n = 4 for SGIII and (0.05-2.0), sr ≤ 0.11, n = 4 for SGIV. The detection limits (blank + 3σ) for aluminum were 70 and 30 μg L−1 using SGIII and SGIV, respectively, where σ is the standard deviation of blank estimation. The accuracy of the developed spectrophotometric method was examined by the determination of standard addition of aluminum in alcohol-free beverages. The relative error did not exceed 9%. SGIII can be regenerated by 0.05 M EDTANa2H2 solution and reused. SGIV was shown to be perspective for determination of aluminum in solution in the range of 0.01-0.13 mg L−1 by solid phase luminescent technique.  相似文献   

9.
Mesquita RB  Rangel AO 《Talanta》2005,68(2):268-273
A gas diffusion sequential injection system for spectrophotometric determination of free chlorine is described. The detection is based in the colorimetric reaction between free chlorine and a low toxicity reagent o-dianisidine. A gas diffusion unit is used to isolate free chlorine from the sample in order to avoid possible interferences. This feature results from the conversion of free chlorine to molecular chlorine (gaseous) with sample acidification. With minor changes in the operating conditions, two different dynamic ranges were obtained enhancing the application both to water samples and bleaches. The results obtained with the developed system were compared to the reference method, iodometric titration and proved not to be statistically different. A detection limit of 0.6 mg ClO/L was achieved. Repeatability was evaluated from 10 consecutive determinations being the results better than 2%. The two dynamic ranges presented different determination rates: 15 h−1 for 0.6-4.8 mg ClO/L (water samples) and 30 h−1 for 0.047-0.188 g ClO/L (bleaches).  相似文献   

10.
Maleki N  Safavi A  Doroodmand MM 《Talanta》2005,66(4):858-862
A hydride generation method for the determination of traces of selenium at ng mL−1 concentration ranges has been introduced using a solid mixture of tartaric acid and sodium tetrahydroborate. Atomic absorption spectrometry (AAS) has been used as the detection system. Several parameters such as the ratio of tartaric acid to sodium tetrahydroborate, type and amount of acid, and the reaction temperature were optimized by using 640 ng mL−1 (16 ng per 25 μL) of Se(IV) standard solution. The calibration curve was linear from 20 to 1200 ng mL−1 (0.5-30 ng Se(IV) per 25 μL). The relative standard deviation (%R.S.D.) of the determination was 1.93% and the detection limit was 10.6 ng mL−1 (265 pg per 25 μL) of Se(IV). The reliability of the method was checked using different types of environmental samples, such as several types of water, a sample of soil and also in a kind of calcium phosphate sample by standard addition method. For conversion of Se(VI) present in real samples to Se(IV), l-cysteine was added to NaBH4 and tartaric acid mixture. The results showed good agreement between this method and other hydride generation techniques.  相似文献   

11.
A new method involving headspace single-drop microextraction (SDME) and capillary electrophoresis (CE) is developed for the preconcentration and determination of ammonia (as dissolved NH3 and ammonium ion). An aqueous microdrop (5 μL) containing 1 mmol/L H3PO4 and 0.5 mmol/L KH2PO4 (as internal standard) was used as the acceptor phase. Common experimental parameters (sample and acceptor phase pH, extraction temperature, extraction time) affecting the extraction efficiency were investigated. Proposed SDME-CE method provided about 14-fold enrichment in about 20 min. The calibration curve was linear for concentrations of NH4+ in the range from 5 to 100 μmol/L (R2 = 0.996). The LOD (S / N = 3) was estimated to be 1.5 μmol/L of NH4+. Such detection sensitivity is high enough for ammonia determination in common environmental and biological samples. Finally, headspace SDME was applied to determine ammonia in human blood, seawater and milk samples with spiked recoveries in the range of 96-107%.  相似文献   

12.
Gao Y  Wang G  Huang H  Hu J  Shah SM  Su X 《Talanta》2011,85(2):1075-1080
In this paper, we utilized the instinct peroxidase-like property of Fe3O4 magnetic nanoparticles (MNPs) to establish a new fluorometric method for determination of hydrogen peroxide and glucose. In the presence of Fe3O4 MNPs as peroxidase mimetic catalyst, H2O2 was decomposed into radical that could quench the fluorescence of CdTe QDs more efficiently and rapidly. Then the oxidization of glucose by glucose oxidase was coupled with the fluorescence quenching of CdTe QDs by H2O2 producer with Fe3O4 MNPs catalyst, which can be used to detect glucose. Under the optimal reaction conditions, a linear correlation was established between fluorescence intensity ratio I0/I and concentration of H2O2 from 1.8 × 10−7 to 9 × 10−4 mol/L with a detection limit of 1.8 × 10−8 mol/L. And a linear correlation was established between fluorescence intensity ratio I0/I and concentration of glucose from 1.6 × 10−6 to 1.6 × 10−4 mol/L with a detection limit of 1.0 × 10−6 mol/L. The proposed method was applied to the determination of glucose in human serum samples with satisfactory results.  相似文献   

13.
The reaction between uranyl nitrate hexahydrate and phenolic ligand precursor [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-4-amino-1-butanol) · HCl], H3L1 · HCl, leads to a uranyl complex [UO2(H2L1)2] (1a) and [UO2(H2L1)2] · 2CH3CN (1b). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-4-amino-1-butanol)H3L2 · HCl], H3L2 · HCl, yields a uranyl complex with a formula [UO2(H2L2)2] · CH3CN (2). The ligand [(N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-5-amino-1-pentanol) · HCl], H3L3 · HCl, produces a uranyl complex with a formula [UO2(H2L3)2] · 2CH3CN (3) and the ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-5-amino-1-pentanol) · HCl], H3L4 · HCl, leads to a uranyl complex with a formula [UO2(H2L4)2] · 2CH3CN (4). The ligand [(N,N-bis(2-hydroxy-5-tert-butyl-3-methylbenzyl)-6-amino-1-hexanol) · HCl], H3L5 · HCl, leads to a uranyl complex with a formula [UO2(H2L5)2] · 4toluene (5). The complexes 15 are obtained using a molar ratio of 1:2 (U to L) in the presence of a base (triethylamine). The molecular structures of 1a, 1b, 3, 4 and 5 were verified by X-ray crystallography. All complexes are neutral zwitterions and have similar centrosymmetric, mononuclear, distorted octahedral uranyl structures with the four coordinating phenoxo ligands in an equatorial plane. In uranyl ion extraction studies from water to dichloromethane with ligands H3L1 · HCl–H3L5 · HCl, ligands H3L1 · HCl, H3L4 · HCl and H3L5 · HCl are the most effective ones.  相似文献   

14.
Ying Gao  Yuanhong Xu  Jing Li 《Talanta》2009,80(2):448-453
CE/Ru(bpy)32+ electrochemiluminescence (ECL) system with the assistance of ionic liquids (ILs) was successfully established for sensitive determination of verticine and verticinone in Bulbus Fritillariae for the first time. Migration behavior of alkaloid largely relies on the hydrogen bonding interactions between alkyl imidazolium cations in ILs and the alkaloids. Running buffer containing 40 mmol/L 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) IL-8 mmol/L phosphate resulted in significant changes in separation selectivity for alkaloids with similar structures. The highest sensitivity of the detection was obtained by maintaining the detection potential at 1.2 V. Under the optimized conditions, relative standard derivations of the ECL intensity and the migration time were 3.27 and 2.84% for verticine and 4.42 and 1.69% for verticinone, respectively. The standard curves were linear between 1 × 10−8 and 1 × 10−6 mol/L for verticine and between 5 × 10−8 and 1 × 10−6 mol/L for verticinone, respectively. Detection limits of 1.25 × 10−10 mol/L for verticine and 1 × 10−10 mol/L for verticinone were obtained (S/N = 3). Developed method was successfully applied to determine the amounts of alkaloids in Bulbus Fritillariae.  相似文献   

15.
Xun Zhou 《Talanta》2007,71(4):1541-1545
A simple and rapid method using micellar electrokinetic capillary chromatography (MEKC) was developed for the separation and determination of acrylamide in potato chips at low levels for the first time. The experimental conditions for the separation and quantification of acrylamide were optimized at first. The optimized conditions were: 50 mmol/L Na2B4O7 and 40 mmol/L SDS at pH 10.0, 12 kV applied voltage, 76 cm total length (67 cm effective length) and 75 μm i.d. capillary, 198 nm wavelength, 15 cm high 25 s hydrodynamics sample injection, 20 °C air-cooling. The linear response of acrylamide concentration ranges from 0.5 to 100 μg/mL with high correlation coefficient (r = 0.9986, n = 9). The LOD and LOQ were estimated to be 0.1 and 0.33 μg/mL based on S/N = 3 and 10. The precision values (expressed as R.S.D.) of intra- and inter-day were 0.86-4.35% and 2.61-9.65%, respectively. Recoveries spiked at levels 2, 20, 60 μg/mL ranged between 90.86% and 99.6% with R.S.D. less than 6.5%. Finally, the developed method has been applied to the analysis of real samples and has achieved satisfactory results. All of these indicated that it was a reliable method for the quantification of acrylamide in potato chips.  相似文献   

16.
Li J  Yu J  Zhao F  Zeng B 《Analytica chimica acta》2007,587(1):33-40
The direct electrochemistry of glucose oxidase (GOD) entrapped in nano gold particles (NAs)-N,N-dimethylformamide (DMF)-1-butyl-3-methylimidazolium hexafluophosphate (BMIMPF6) composite film on a glassy carbon electrode (NAs-DMF-GOD (BMIMPF6)/GC) has been investigated for first time. The immobilized GOD exhibits a pair of well-defined reversible peaks in 0.050 M pH 5 phosphate solutions (PS), resulting from the redox of flavin adenine dinucleotide (FAD) in GOD. The peak currents are three times as large as those of GOD-NAs-DMF film coated GC electrode (i.e. NAs-DMF-GOD (water)/GC). In addition, the NAs-DMF-GOD (BMIMPF6) composite material has higher thermal stability than NAs-DMF-GOD (water). Results show that ionic liquid BMIMPF6, DMF and NAs are requisite for GOD to exhibit a pair of stable and reversible peaks. Without any of them, the peaks of GOD become small and unstable. Upon the addition of glucose, the peak currents of GOD decrease and a new cathodic peak occurs at −0.8 V (versus SCE), which corresponds to the reduction of hydrogen peroxide (H2O2) generated by the catalytic oxidation of glucose. The peak current of the new cathodic peak and the glucose concentration show a linear relationship in the ranges of 1.0 × 10−7 to 1.0 × 10−6 M and 2.0 × 10−6 to 2.0 × 10−5 M. The kinetic parameter Imax of H2O2 is estimated to be 1.19 × 10−6 A and the apparent Km (Michaelis-Menten constant) for the enzymatic reaction is 3.49 μM. This method has been successfully applied to the determination of glucose in human plasma and beer samples, and the average recoveries are 97.2% and 99%, respectively.  相似文献   

17.
A series of new asymmetrically N-substituted derivatives of the 1,4,7-triazacyclononane (tacn) macrocycle have been prepared from the common precursor 1,4,7-triazatricyclo[5.2.1.04,10]decane: 1-ethyl-4-isopropyl-1,4,7-triazacyclononane (L1), 1-isopropyl-4-propyl-1,4,7-triazacyclononane (L2), 1-(3-aminopropyl)-4-benzyl-7-isopropyl-1,4,7-triazacyclononane (L3), 1-benzyl-4-isopropyl-1,4,7-triazacyclononane (L4) and 1,4-bis(3-aminopropyl)-7-isopropyl-1,4,7-triazacyclononane (L5). The corresponding monomeric copper(II) complexes were synthesised and were found to be of composition: [Cu(L1)Cl2] · 1/2 H2O (C1), [Cu(L4)Cl2] · 4H2O (C2), [Cu(L3)(MeCN)](ClO4)2 (C3), [Cu(L5)](ClO4)2 · MeCN · NaClO4 (C4) and [Cu(L2)Cl2] · 1/2 H2O (C5). The X-ray crystal structures of each complex revealed a distorted square-pyramidal copper(II) geometry, with the nitrogen donors on the ligands occupying 3 (C1 and C2), 4 (C3) or 5 (C4) coordination sites on the Cu(II) centre. The metal complexes were tested for the ability to hydrolytically cleave phosphate esters at near physiological conditions, using the model phosphodiester, bis(p-nitrophenyl)phosphate (BNPP). The observed rate constants for BNPP cleavage followed the order kC1 ≈ kC2 > kC5 ? kC3 > kC4, confirming that tacn-type Cu(II) complexes efficiently accelerate phosphate ester hydrolysis by being able to bind phosphate esters and also form the nucleophile necessary to carry out intramolecular cleavage. Complexes C1 and C2, featuring asymmetrically disubstituted ligands, exhibited rate constants of the same order of magnitude as those reported for the Cu(II) complexes of symmetrically tri-N-alkylated tacn ligands (k ∼ 1.5 × 10−5 s−1).  相似文献   

18.
This paper reports on investigations into interferences with the measurements of nanomolar nitrate + nitrite and soluble reactive phosphate (SRP) in oceanic surface seawater using a segmented continuous flow autoanalyser (SCFA) interfaced with a liquid-waveguide capillary flow-cell (LWCC). The interferences of silicate and arsenate with the analysis of SRP, the effect of sample filtration on the measurement of nanomolar nitrate + nitrite and SRP concentrations, and the stability of samples during storage are described.The investigation into the effect of arsenate (concentrations up to 100 nM) on phosphate analysis (concentrations up to 50 nM) indicated that the arsenate interference scaled linearly with phosphate concentrations, resulting in an overestimation of SRP concentrations of 4.6 ± 1.4% for an assumed arsenate concentration of 20 nM. The effect of added Si(OH)4 was to increase SRP signals by up to 36 ± 19 nM (at 100 μM Si(OH)4). However, at silicate concentrations below 1.5 μM, which are typically observed in oligotrophic surface ocean waters, the effect of silicate on the phosphate analysis was much smaller (≤0.78 ± 0.15 nM change in SRP). Since arsenate and silicate interferences vary between analytical approaches used for nanomolar SRP analysis, it is important that the interferences are systematically assessed in any newly developed analytical system.Filtration of surface seawater samples resulted in a decrease in concentration of 1.7-2.7 nM (±0.5 nM) SRP, and a small decrease in nitrate concentrations which was within the precision of the method (±0.6 nM). A stability study indicated that storage of very low concentration nutrient samples in the dark at 4 °C for less than 24 h resulted in no statistically significant changes in nutrient concentrations. Freezing unfiltered surface seawater samples from an oligotrophic ocean region resulted in a small but significant increase in the SRP concentration from 12.0 ± 1.3 nM (n = 3) to 14.7 ± 0.6 nM (n = 3) (Student's t-test; p = 0.021). The corresponding change in nitrate concentration was not significant (Student's t-test; p > 0.05).  相似文献   

19.
Headspace single-drop microextraction has been combined with microvolume UV-vis spectrophotometry for iodine determination. Matrix separation and preconcentration of iodide following in situ volatile iodine generation and extraction into a microdrop of N,N′-dimethylformamide is performed. An exhaustive characterization of the microextraction system and the experimental variables affecting iodine generation from iodide was carried out. The procedure employed consisted of exposing 2.5 μL of N,N′-dimethylformamide to the headspace of a 10 mL acidic (H2SO4 2 mol L−1) aqueous solution containing 1.7 mol L−1 Na2SO4 for 7 min. Addition of 1 mL of H2O2 1 mol L−1 for in situ iodine generation was performed. The limit of detection was determined as 0.69 μg L−1. The repeatability, expressed as relative standard deviation, was 4.7% (n = 6). The calibration working range was from 5 to 200 μg L−1 (r2 = 0.9991). The large preconcentration factor obtained, ca. 623 in only 7 min, compensate for the 10-fold loss in sensitivity caused by the decreased optical path, which results in improved detection limits as compared to spectrophotometric measurements carried out with conventional sample cells. The method was successfully applied to the determination of iodine in water, pharmaceutical and food samples.  相似文献   

20.
A dispersive liquid–liquid microextraction (DLLME) method followed by high-performance liquid chromatography–triple quadrupole mass spectrometry has been developed for the simultaneous determination of linear alkylbenzene sulfonates (LAS C10, C11, C12, and C13), nonylphenol (NP), nonylphenol mono- and diethoxylates (NP1EO and NP2EO), and di-(2-ethylhexyl)phthalate (DEHP). The applicability of the method has been tested by the determination of the above mentioned organic pollutants in tap water and wastewater. Several parameters affecting DLLME, such as, the type and volume of the extraction and disperser solvents, sample pH, ionic strength and number of extractions, have been evaluated. Methanol (1.5 mL) was selected among the six disperser solvent tested. Dichlorobenzene (50 μL) was selected among the four extraction solvent tested. Enrichment factor achieved was 80. Linear ranges in samples were 0.01–3.42 μg L−1 for LAS C1013 and NP2EO, 0.09–5.17 μg L−1 for NP1EO, 0.17–9.19 μg L−1 for NP and 0.40–17.9 μg L−1 for DEHP. Coefficients of correlation were higher than 0.997. Limits of quantitation in tap water and wastewater were in the ranges 0.009–0.019 μg L−1 for LAS, 0.009–0.091 μg L−1 for NP, NP1EO and NP2EO and 0.201–0.224 μg L−1 for DEHP. Extraction recoveries were in the range from 57 to 80%, except for LAS C10 (30–36%). The method was successfully applied to the determination of these pollutants in tap water and effluent wastewater from Seville (South of Spain). The DLLME method developed is fast, easy to perform, requires low solvent volumes and allows the determination of the priority hazardous substances NP and DEHP (Directive 2008/105/EC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号