首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of opinion dynamics, such as spreading and controlling of rumors, has become an important issue on social networks. Numerous models have been devised to describe this process, including epidemic models and spin models, which mainly focus on how opinions spread and interact with each other, respectively. In this paper, we propose a model that combines the spreading stage and the interaction stage for opinions to illustrate the process of dispelling a rumor. Moreover, we set up authoritative nodes, which disseminate positive opinion to counterbalance the negative opinion prevailing on online social networking sites. With analysis of the relationship among positive opinion proportion, opinion strength and the density of authoritative nodes in networks with different topologies, we demonstrate that the positive opinion proportion grows with the density of authoritative nodes until the positive opinion prevails in the entire network. In particular, the relationship is linear in homogeneous topologies. Besides, it is also noteworthy that initial locations of the negative opinion source and authoritative nodes do not influence positive opinion proportion in homogeneous networks but have a significant impact on heterogeneous networks. The results are verified by numerical simulations and are helpful to understand the mechanism of two different opinions interacting with each other on online social networking sites.  相似文献   

2.
The study of the impact of human activity patterns on network dynamics has attracted a lot of attention in recent years. However, individuals’ knowledge of their own physical states has rarely been incorporated into modeling processes. In real life, for certain infectious processes, infected agents may not have any visible or physical signs and symptoms; therefore, they may believe that they are uninfected even when they have been infected asymptomatically. This infection awareness factor is covered neither in the classical epidemic models such as SIS nor in network propagation studies. In this article, we propose a novel infectious process model that differentiates between the infection awareness states and the physical states of individuals and extend the SIS model to deal with both asymptomatic infection characteristics and human activity patterns. With regards to the latter, we focus particularly on individuals’ testing action, which is to determine whether an individual is infected by an epidemic. The simulation results show that less effort is required in controlling the disease when the transmission probability is either very small or large enough and that Poisson activity patterns are more effective than heavy-tailed patterns in controlling and eliminating asymptomatic infectious diseases due to the long-tail characteristic.  相似文献   

3.
The dynamics of individual characteristics of economic agents is modeled with the link structure influenced by this dynamics: links between agents with similar characteristics are more stable than those between agents with vastly different characteristics. A simple scaling law describes the number of distinct surviving characteristic realizations as a function of the number of agents and the number of possible distinct characteristics realizations. With the chosen specification, the investigated properties do not essentially differ from those found for analogous sociophysics models with a fixed network structure.  相似文献   

4.
A new class of a spatially homogeneous and anisotropic Bianchi type-I cosmological models of the universe for perfect fluid distribution within the framework of scalar-tensor theory of gravitation proposed by Sáez and Ballester (Phys. Lett. 113:467, 1986) is investigated. To prevail the deterministic solutions we choose the different scale factors which yield time-dependent deceleration parameters (DP) representing models which generate a transition of the universe from the early decelerated phase to the recent accelerating phase. Three different physically viable models of the universe are obtained in which their anisotropic solutions may enter to some isotropic inflationary era. The modified Einstein’s field equations are solved exactly and the models are found to be in good concordance with recent observations. Some physical and geometric properties of the models are also discussed.  相似文献   

5.
This issue contains papers selected from the contributions presented at the 5th International Conference on “Applications of Physics in Financial Analysis” (APFA5) held in Torino from June 29th to July 1st, 2006 (http://www.polito.it/apfa5). The issue collects recent applications of models and methods of statistical physics to economic problems. This interdisciplinary field of research, known as Econophysics, has seen intensive growth over the last decade. The challenge for econophysicists will be to go beyond the traditional views of economics and physics unifying the separate lines of development followed by the two disciplines over great part of the 20th century.“The conventional view serves to protect us from the painful job of thinking”, John Kenneth Galbraith (1908-2006).  相似文献   

6.
Stock investors usually make their short-term investment decisions according to recent stock information such as the late market news, technical analysis reports, and price fluctuations. To reflect these short-term factors which impact stock price, this paper proposes a comprehensive fuzzy time-series, which factors linear relationships between recent periods of stock prices and fuzzy logical relationships (nonlinear relationships) mined from time-series into forecasting processes. In empirical analysis, the TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) and HSI (Heng Seng Index) are employed as experimental datasets, and four recent fuzzy time-series models, Chen’s (1996), Yu’s (2005), Cheng’s (2006) and Chen’s (2007), are used as comparison models. Besides, to compare with conventional statistic method, the method of least squares is utilized to estimate the auto-regressive models of the testing periods within the databases. From analysis results, the performance comparisons indicate that the multi-period adaptation model, proposed in this paper, can effectively improve the forecasting performance of conventional fuzzy time-series models which only factor fuzzy logical relationships in forecasting processes. From the empirical study, the traditional statistic method and the proposed model both reveal that stock price patterns in the Taiwan stock and Hong Kong stock markets are short-term.  相似文献   

7.
Many recent exciting discoveries have revealed the versatility of RNAs and their importance in a variety of cellular functions which are strongly coupled to RNA structures. To understand the functions of RNAs, some structure prediction models have been developed in recent years. In this review, the progress in computational models for RNA structure prediction is introduced and the distinguishing features of many outstanding algorithms are discussed, emphasizing threedimensional(3D) structure prediction. A promising coarse-grained model for predicting RNA 3D structure, stability and salt effect is also introduced briefly. Finally, we discuss the major challenges in the RNA 3D structure modeling.  相似文献   

8.
Most existing social learning models assume that there is only one underlying true state. In this work, we consider a social learning model with multiple true states, in which agents in different groups receive different signal sequences generated by their corresponding underlying true states. Each agent updates his belief by combining his rational self-adjustment based on the external signals he received and the influence of his neighbors according to their communication. We observe chaotic oscillation in the belief evolution, which implies that neither true state could be learnt correctly by calculating the largest Lyapunov exponents and Hurst exponents.  相似文献   

9.
V. Šauli 《Few-Body Systems》2006,39(1-2):45-99
We discuss some recent developments in nonperturbative studies of quantum field theory (QFT) using the Schwinger-Dyson equations formulated directly in Minkowski space. We begin with the introduction of essential ideas of the integral representation in QFT and a discussion of the renormalization in this approach. The technique based on the integral representation of Green’s functions is exploited to solve Schwinger-Dyson equations in several models of quantum field theory, e.g., in scalar models and in strong coupling QED3+1 in the quenched and in the unquenched approximation. The phenomenon of dynamical chiral symmetry breaking in regularized theory is touched. In QCD, the analyticity of the gluon propagator on the complex momentum square plane is exploited to continue some recent lattice data to the timelike momentum axis. We find a contribution to the non-positive absorptive part in the Landau-gauge gluon propagator which is in agreement with some other new recent analyses.  相似文献   

10.
A brief survey is made of those popular and recent models of pp-scattering which incorporate spin at least to some extent. These models are: conventional Regge pole models, models of the eikonal type and geometric (optical) models. Particular attention is paid to the structure of polarization to be expected at higher energies.Presented at the Symposium on Hadron-Hadron Scattering at High Energies, Liblice, Czechoslovakia, June 16–21, 1975.  相似文献   

11.
12.
An investigation of the spin excitation spectrum of charge ordered (CO) NaV2O5 is presented. We discuss several different exchange models which may be relevant for this compound, namely in-line and zig-zag chain models with weak as well as strong inter-chain coupling and also a ladder model and a CO/MV (mixed valent) model. We put special emphasis on the importance of large additional exchange across the diagonals of V-ladders and the presence of exchange anisotropies on the excitation spectrum. It is shown that the observed splitting of transverse dispersion branches may both be interpreted as anisotropy effect as well as acoustic-optic mode splitting in the weakly coupled chain models. In addition we calculate the field dependence of excitation modes in these models. Furthermore we show that for strong inter-chain coupling, as suggested by recent LDA + U results, an additional high energy optical excitation appears and the spin gap is determined by anisotropies. The most promising CO/MV model predicts a spin wave dispersion perpendicular to the chains which agrees very well with recent results obtained by inelastic neutron scattering. Received 30 April 1999 and Received in final form 5 October 1999  相似文献   

13.
A survey is given of recent Monte Carlo studies of lattice defect models for melting in three and two dimensions. In two dimensions special emphasis is laid upon a recently proposed model which exhibits a crossover from a single first-order transition to two successive transitions of the Kosterlitz-Thouless type.  相似文献   

14.
We have tested some simple quintessential inflation models, imposing the requirement that they match with the recent observational data provided by the BICEP and Planck team and leading to a reheating temperature, which is obtained via gravitational particle production after inflation, supporting the nucleosynthesis success. Moreover, for the models coming from supergravity one needs to demand low temperatures in order to avoid problems such as the gravitino overproduction or the gravitational production of moduli fields, which are obtained only when the reheating temperature is due to the production of massless particles with a coupling constant very close to its conformal value.  相似文献   

15.
We first show that the chaos-generating terms are absent from the vacuum field equations in the case of the general Bianchi VI and VII cosmological models. According to recent studies, this proves that the Kasnerian metric is a general solution for these models in the neighborhood of the initial singularity. Then, using a method developed by Jantzen, we reduce the field equations to a nonautonomous system of order two. A numerical integration leads to the explicit four-parameter asymptotic form of a general solution, which is indeed Kasnerian in the canonical invariant basis.  相似文献   

16.
This paper gives an overview and reviews some recent investigations of anisotropic and inhomogeneous models. A class of models, which admit an Abelian two-parameter group of isometries, is considered in detail. Within this class of models we present exact solutions of the Einstein field equations. These solutions describe inhomogeneous cosmological models containing gravitational, scalar and electromagnetic waves. The solutions are used to study the effect of the symmetry breaking in corresponding Bianchi models. The nonlinear dynamics of primordial inhomogeneities is considered. The global evolution of the inhomogeneous models considered is also investigated. Finally we discuss the validity of various assumptions, used in the earlier treatments of inhomogeneous models.  相似文献   

17.
Plane symmetric viscous fluid cosmological models of the universe with a variable cosmological term are investigated. The viscosity coefficient of bulk viscous fluid is assumed to be a power function of mass density whereas the coefficient of shear viscosity is to be proportional to rate of expansion in the model. We have also obtained a special model in which the shear viscosity is assumed to be zero. The cosmological constant Λ is found to be a decreasing function of time and a positive which is supported by results from recent supernovae Ia observations. Some physical and geometric properties of the models are also discussed.  相似文献   

18.
19.
From recent observational data two significant directions have been made in the field of theoretical cosmology recently.First,we are now able to make use of present observations,such as the Planck and BICEP2 data,to examine theoretical predictions from the standard inflationaryΛCDM which were made decades of years ago.Second,we can search for new cosmological signatures as a way to explore physics beyond the standard cosmic paradigm.In particular,a subset of early universe models admit a nonsingular bouncing solution that attempts to address the issue of the big bang singularity.These models have achieved a series of considerable developments in recent years,in particular in their perturbative frameworks,which made brand-new predictions of cosmological signatures that could be visible in current and forthcoming observations.Herein we present two representative paradigms of early universe physics.The first is the reputed new matter(or matter-ekpyrotic)bounce scenario in which the universe starts with a matter-dominated contraction phase and transitions into an ekpyrotic phase.In the setting of this paradigm,we have proposed some possible mechanisms of generating a red tilt for primordial curvature perturbations and confront the general predictions with recent cosmological observations.The second is the matter-bounce inflation scenario which can be viewed as an extension of inflationary cosmology with a matter contraction before inflation.We present a class of possible model constructions and review the implications on the current CMB experiments.Lastly a review of significant achievements of these paradigms beyond the inflationaryΛCDM model is made,which is expected to shed new light on the future direction of observational cosmology.  相似文献   

20.
In this study, we evaluate power law inflation (PLI) with a monomial potential and obtain a novel exact solution. It is well known that the conventional PLI with an exponential potential is inconsistent with the Planck data. Unlike the standard PLI, the present model does not encounter the graceful exit problem, and the results agree fairly well with recent observations. In our analysis, we calculate the spectral index and the tensor-to-scalar ratio, both of which agree very well with recent observational data and are comparable with those of other modified inflationary models. The employed technique reveals that the large cosmological constant decreases with the expansion of the universe in the case of the PLI. The coupling of the inflaton with gravitation is the primary factor in this technique. The basic assumption here is that the two metric tensors in the gravitational and inflaton parts correspond to different conformal frames, which contradicts with the conventional PLI, where the inflaton is directly coupled with the background metric tensor. This fact has direct applications to different dark energy models and the assisted quintessence theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号