首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Bifurcations can cause dynamical systems with slowly varying parameters to transition to far-away attractors. The terms “critical transition” or “tipping point” have been used to describe this situation. Critical transitions have been observed in an astonishingly diverse set of applications from ecosystems and climate change to medicine and finance. The main goal of this paper is to give an overview which standard mathematical theories can be applied to critical transitions. We shall focus on early-warning signs that have been suggested to predict critical transitions and point out what mathematical theory can provide in this context. Starting from classical bifurcation theory and incorporating multiple time scale dynamics one can give a detailed analysis of local bifurcations that induce critical transitions. We suggest that the mathematical theory of fast-slow systems provides a natural definition of critical transitions. Since noise often plays a crucial role near critical transitions the next step is to consider stochastic fast-slow systems. The interplay between sample path techniques, partial differential equations and random dynamical systems is highlighted. Each viewpoint provides potential early-warning signs for critical transitions. Since increasing variance has been suggested as an early-warning sign we examine it in the context of normal forms analytically, numerically and geometrically; we also consider autocorrelation numerically. Hence we demonstrate the applicability of early-warning signs for generic models. We end with suggestions for future directions of the theory.  相似文献   

2.
G. Costanza 《Physica A》2009,388(13):2600-2622
The continuum evolution equations are derived from updating rules for three classes of stochastic models. The first class corresponds to models whose stochastic continuum equations are of the Langevin type obtained after carrying out a “local average” known as coarse-graining. The second class consists of a hierarchy of continuum equations for the correlations of the dynamical variables obtained after making an average over realizations. This average generates a hierarchy of deterministic partial differential equations except when the dynamical variables do not depend on the values of the neighboring dynamical variables, in which case a hierarchy of ordinary differential equations is obtained. The third class of evolution equations for the correlations of the dynamical variable constitutes another hierarchy after calculating an average over both realizations and all the sites of the lattice. This double average generates a hierarchy of deterministic ordinary differential equations. The second and third classes of equations are truncated using a mean field (m,n)-closure approximation in order to obtain a finite set of equations. Illustrative examples of every class are given.  相似文献   

3.
Erwin Frey 《Physica A》2010,389(20):4265-4298
Ecological systems are complex assemblies of large numbers of individuals, interacting competitively under multifaceted environmental conditions. Recent studies using microbial laboratory communities have revealed some of the self-organization principles underneath the complexity of these systems. A major role of the inherent stochasticity of its dynamics and the spatial segregation of different interacting species into distinct patterns has thereby been established. It ensures the viability of microbial colonies by allowing for species diversity, cooperative behavior and other kinds of “social” behavior.A synthesis of evolutionary game theory, nonlinear dynamics, and the theory of stochastic processes provides the mathematical tools and a conceptual framework for a deeper understanding of these ecological systems. We give an introduction into the modern formulation of these theories and illustrate their effectiveness focussing on selected examples of microbial systems. Intrinsic fluctuations, stemming from the discreteness of individuals, are ubiquitous, and can have an important impact on the stability of ecosystems. In the absence of speciation, extinction of species is unavoidable. It may, however, take very long times. We provide a general concept for defining survival and extinction on ecological time-scales. Spatial degrees of freedom come with a certain mobility of individuals. When the latter is sufficiently high, bacterial community structures can be understood through mapping individual-based models, in a continuum approach, onto stochastic partial differential equations. These allow progress using methods of nonlinear dynamics such as bifurcation analysis and invariant manifolds. We conclude with a perspective on the current challenges in quantifying bacterial pattern formation, and how this might have an impact on fundamental research in non-equilibrium physics.  相似文献   

4.
Laura C. Carpi 《Physica A》2010,389(10):2020-55
Recent research aiming at the distinction between deterministic or stochastic behavior in observational time series has looked into the properties of the “ordinal patterns” [C. Bandt, B. Pompe, Phys. Rev. Lett. 88 (2002) 174102]. In particular, new insight has been obtained considering the emergence of the so-called “forbidden ordinal patterns” [J.M. Amigó, S. Zambrano, M.A. F Sanjuán, Europhys. Lett. 79 (2007) 50001]. It was shown that deterministic one-dimensional maps always have forbidden ordinal patterns, in contrast with time series generated by an unconstrained stochastic process in which all the patterns appear with probability one. Techniques based on the comparison of this property in an observational time series and in white Gaussian noise were implemented. However, the comparison with correlated stochastic processes was not considered. In this paper we used the concept of “missing ordinal patterns” to study their decay rate as a function of the time series length in three stochastic processes with different degrees of correlation: fractional Brownian motion, fractional Gaussian noise and, noises with fk power spectrum. We show that the decay rate of “missing ordinal patterns” in these processes depend on their correlation structures. We finally discuss the implications of the present results for the use of these properties as a tool for distinguishing deterministic from stochastic processes.  相似文献   

5.
In cognitive psychology, some experiments for games were reported, and they demonstrated that real players did not use the “rational strategy” provided by classical game theory and based on the notion of the Nasch equilibrium. This psychological phenomenon was called the disjunction effect. Recently, we proposed a model of decision making which can explain this effect (“irrationality” of players) Asano et al. (2010, 2011) [23] and [24]. Our model is based on the mathematical formalism of quantum mechanics, because psychological fluctuations inducing the irrationality are formally represented as quantum fluctuations Asano et al. (2011) [55]. In this paper, we reconsider the process of quantum-like decision-making more closely and redefine it as a well-defined quantum dynamics by using the concept of lifting channel, which is an important concept in quantum information theory. We also present numerical simulation for this quantum-like mental dynamics. It is non-Markovian by its nature. Stabilization to the steady state solution (determining subjective probabilities for decision making) is based on the collective effect of mental fluctuations collected in the working memory of a decision maker.  相似文献   

6.
Brownian motion is the archetypal model for random transport processes in science and engineering. Brownian motion displays neither wild fluctuations (the “Noah effect”), nor long-range correlations (the “Joseph effect”). The quintessential model for processes displaying the Noah effect is Lévy motion, the quintessential model for processes displaying the Joseph effect is fractional Brownian motion, and the prototypical model for processes displaying both the Noah and Joseph effects is fractional Lévy motion. In this paper we review these four random-motion models–henceforth termed “fractional motions” –via a unified physical setting that is based on Langevin’s equation, the Einstein–Smoluchowski paradigm, and stochastic scaling limits. The unified setting explains the universal macroscopic emergence of fractional motions, and predicts–according to microscopic-level details–which of the four fractional motions will emerge on the macroscopic level. The statistical properties of fractional motions are classified and parametrized by two exponents—a “Noah exponent” governing their fluctuations, and a “Joseph exponent” governing their dispersions and correlations. This self-contained review provides a concise and cohesive introduction to fractional motions.  相似文献   

7.
We consider periodic and chaotic dynamics of discrete nonlinear maps in the presence of dynamical noise. We show that dynamical noise corrupting dynamics of a nonlinear map may be considered as a measurement “pseudonoise” with the distribution determined by the Jacobian of the map. The formula for the distribution of the measurement “pseudonoise” for one-dimensional quadratic maps has also been obtained in an explicit form. We expect that our results apply to an arbitrary distribution of low-level dynamical noise and hope that these results could help to find a universal method of discriminating dynamical from measurement noise.  相似文献   

8.
This paper derives generalized maximum likelihood estimates of state and model parameters of a stochastic dynamical model. In contrast to previous studies, the change in background distribution due to changes in model parameters is taken into account. An ensemble approach to solving the maximum likelihood estimates is proposed. An exact solution for the ensemble update based on a square root Kalman Filter is derived. This solution involves a two step procedure in which an ensemble is first produced by a standard ensemble Kalman Filter, and then “corrected” to account for parameter estimation, thereby allowing a user to take advantage of an existing ensemble filter. The solution is illustrated with simple, low-dimensional stochastic dynamical models and shown to work well and outperform augmentation methods for estimating stochastic parameters.  相似文献   

9.
We argue that high-multiplicity events in proton–proton or proton–nucleus collisions originate from large-size fluctuations of the nucleon shape. We discuss a pair of simple models of such proton shape fluctuations. A “fat” proton with a size of 3 fm occurs with observable frequency. In light of this result, collective flow behavior in the ensuing nuclear interaction seems feasible. We discuss the influence of these models on the parton structure of the proton.  相似文献   

10.
František Slanina 《Physica A》2010,389(16):3230-5748
We systematically compare several classes of stochastic volatility models of stock market fluctuations. We show that the long-time return distribution is either Gaussian or develops a power-law tail, while the short-time return distribution has generically a stretched-exponential form, but can also assume an algebraic decay, in the family of models which we call “GARCH” type. The intermediate regime is found in the exponential Ornstein-Uhlenbeck process. We also calculate the decay of the autocorrelation function of volatility.  相似文献   

11.
This paper concerns the numerical integration of systems of harmonic oscillators coupled by nonlinear terms, like the common FPU models. We show that the most used integration algorithm, namely leap-frog, behaves very gently with such models, preserving in a beautiful way some peculiar features which are known to be very important in the dynamics, in particular the “selection rules” which regulate the interaction among normal modes. This explains why leap-frog, in spite of being a low order algorithm, behaves so well, as numerical experimentalists always observed. At the same time, we show how the algorithm can be improved by introducing, at a low cost, a “counterterm” which eliminates the dominant numerical error.  相似文献   

12.
While the field of dynamical systems has been focused on properties which are invariant to “good” change of variables, namely conjugacy, which is an equivalence relationship, when using dynamical systems methods in science and modeling, there lacks a dynamical way to compare dynamical systems, even when they are in some sense “close.” In Skufca and Bolt (2007) [7] and Skufca and Bolt (2008) [8], we introduced mathematics to support a philosophy that two dynamical systems should be compared through a change of coordinates between them, that is, a commuter between them which may fail to be a homeomorphism. The progressive degree to which the commuter fails to be a homeomorphism defines what we call a homeomorphic defect. However, at the time of publication of these papers, there were limits in the mathematical technology requiring that the transformations be one-dimensional mappings and flows which are well described, for construction of the commuters by fixed point iteration, and further, difficulties in numerically computing defects in the more complicated one-dimensional cases, and further limits to higher-dimensional problems. Therefore, here we extend the theory to allow for multivariate transformations, with construction methods separate from the fixed point iteration, and new methods to compute defect. In the course of this work, we introduce several new technical innovations in order to cope with much more general problems. We introduce assignment mappings to understand and illustrate commuters in a broader setting. We discuss the role of symbolic dynamics and coding as related to commuters as well as defect measure. Further, we discuss refinement and convergence of a nested refinement of commuter representations. This work represents a step forward in the possibility of using the commuter and defects to judge model quality in those dynamical systems for which a symbolic dynamics, and hence a generating partition may be available; while finding a generating partition is a problem in its own right, we offer this work as further perspective for interpretation of the meaning of commuters and defect measure.  相似文献   

13.
We investigate a stochastic version of cellular automata used for simulating hydrodynamical flows, e.g. the HPP and FHP models. The extra stochasticity consists of random exchanges between neighboring cells which conserve momentum. We prove that, in suitable limits, these models satisfy the appropriate continuous Boltzmann and hydrodynamic equations, the same as those conjectured for the original models (except that there is no negative viscosity contribution). The results are obtained by proving a very strong form of propagation of chaos and by using Hilbert-Chapman-Enskog type expansions. Explicit proofs are presented for the stochastic HPP model.Dedicated to Roland DobrushinResearch partially supported by CNR-PS-MMAIT and NSF grant no. 86–12369  相似文献   

14.
15.
We derive the phenomenological dynamics of interfaces from stochastic microscopic models. The main emphasis is on models with a nonconserved order parameter. A slowly varying interface has then a local normal velocity proportional to the local mean curvature. We study bulk models and effective interface models and obtain Green-Kubo-like expressions for the mobility. Also discussed are interface motion in the case of a conserved order parameter, pure surface diffusion, and interface fluctuations. For the two-dimensional Ising model at zero temperature, motion by mean curvature is established rigorously.  相似文献   

16.
We consider a class of stochastic dynamical systems, called piecewise deterministic Markov processes, with states (x,σ)∈Ω×Γ, Ω being a region in ℝ d or the d-dimensional torus, Γ being a finite set. The continuous variable x follows a piecewise deterministic dynamics, the discrete variable σ evolves by a stochastic jump dynamics and the two resulting evolutions are fully-coupled. We study stationarity, reversibility and time-reversal symmetries of the process. Increasing the frequency of the σ-jumps, the system behaves asymptotically as deterministic and we investigate the structure of its fluctuations (i.e. deviations from the asymptotic behavior), recovering in a non Markovian frame results obtained by Bertini et al. (Phys. Rev. Lett. 87(4):040601, 2001; J. Stat. Phys. 107(3–4):635–675, 2002; J. Stat. Mech. P07014, 2007; Preprint available online at , 2008), in the context of Markovian stochastic interacting particle systems. Finally, we discuss a Gallavotti–Cohen-type symmetry relation with involution map different from time-reversal.  相似文献   

17.
The strongly interacting regime for attractive Bose-Einstein condensates (BECs) tightly confined in an extended cylindrical trap is studied. For appropriately prepared, non-collapsing BECs, the ensuing dynamics are found to be governed by the one-dimensional focusing Nonlinear Schrödinger equation (NLS) in the semiclassical (small dispersion) regime. In spite of the modulational instability of this regime, some mathematically rigorous results on the strong asymptotics of the semiclassical limiting solutions were obtained recently. Using these results, “implosion-like” and “explosion-like” events are predicted whereby an initial hump focuses into a sharp spike which then expands into rapid oscillations. Seemingly related behavior has been observed in three-dimensional experiments and models, where a BEC with a sufficient number of atoms undergoes collapse. The dynamical regimes studied here, however, are not predicted to undergo collapse. Instead, distinct, ordered structures, appearing after the “implosion”, yield interesting new observables that may be experimentally accessible.  相似文献   

18.
19.
A dynamical model of normal immune response has been formulated in terms of cellular automata by Kaufmanet al. We generalize this model incorporating the antigens as a dynamical variable. This generalized model not only describes the kinetics of primary and secondary responses of humoral immunity, together with the appropriate memory cells, but also describes the vaccinated state as well as the states of low-dose and high-dose paralysis. Recently models of autoimmune response have also been developed in terms of discrete automata. But the models are underdetermined by the experimental facts, i.e., several models can account for the same set of observed biological facts. With an aim to find out how large this underdeterminacy is and how it can be reduced systematically, we have carried out an exhaustive computer-aided search of all those discrete three-cell and five-cell models of autoimmune response which at present cannot be ruled out by the existing biological informations. Out of the 325 possible five-cell models, only one fulfilled our criteria. We also carried out simulations of the dynamics of some of these models on a discrete lattice. We discuss the relevance of random interactions in the context of autoimmune disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号