首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Journal of Thermal Analysis and Calorimetry - In the paper, we make linear and nonlinear stability analyses of Rayleigh–Bénard convection in a Newtonian nanoliquid-saturated...  相似文献   

2.

Nanofluids are obtained by suspending metallic or non-metallic nanoparticles in conventional base liquids and can be employed to increase heat transfer rate in various applications. In this study, the effects of adding three types of nanofluids on turbulent convective heat transfer at the entrance region of a constant wall heat flux tube were experimentally studied. The nanofluids were mixtures of aluminium oxide, copper oxide, and silicon carbide at various nanoparticle volume fractions ranging from 0.0002 to 0.002 in water. The convective heat transfer coefficient was measured at different Reynolds numbers of 10,000–50,000. At these concentrations and Reynolds numbers, a maximum of 11–18% of convection heat transfer coefficient was observed as compared to the base fluid, showing a 6–9% increase on average. In this study, it was observed that changes in the nanoparticle type had no considerable effect on heat transfer coefficient increase. According to the model proposed here, the dimensionless thickness of laminar sub-layer is specified as a functional equation of the volume fraction of nanoparticles for each material.

  相似文献   

3.
In the present study, the natural convective heat transfer in a cube filled with Al2O3/H2O and Ag/H2O nanofluids is investigated numerically. Commercial CFD code FLUENT has been used to simulate water-based nanofluid considering it as a single-phase fluid. The influence of different parameters, such as the Rayleigh number and the nanoparticle volume fraction, is studied. The velocity vectors and the isotherm profiles are plotted. The variation of the Average Nusselt number at the hot wall and the variation of y-component of velocity are presented and discussed. The numerical results show a decrease in the heat transfer with the increase in the particle volume fraction and the same trend in the increase of the Nusselt number with the Rayleigh number.  相似文献   

4.
An experimental study is performed to determine the pressure drop and performance characteristics of Al2O3/water and CuO/water nanofluids in a triangular duct under constant heat flux where the flow is laminar. The effects of adding nanoparticles to the base fluid on the pressure drop and friction factor are investigated at different Reynolds numbers. The results show that at a specified Reynolds number, using the nanofluids can lead to an increase in the pressure drop by 35%. It is also found that with increases in the Reynolds number, the rate of increase in the friction factor with the volume fraction of nanoparticles is reduced. Finally, the performance characteristics of the two nanofluids are investigated using the data of pressure drop and convective heat transfer coefficient. The results show that the use of Al2O3/water nanofluid with volume fractions of 1.5% and 2% is not helpful in the triangular duct. It is also concluded that at the same volume fraction of nanoparticles, using Al2O3 nanoparticles is more beneficial than CuO nanoparticles based on the performance index.  相似文献   

5.
In this paper, a review of the impact of most common nanoparticles on the Leidenfrost temperature T Leid in heat transfer applications is delivered. Moreover, a simple economic analysis of the nanoparticles use is proposed. When coolant is distilled water, T Leid can range 150–220 °C; occasionally, it can even amount to over 400 °C. When the base liquid is modified by additives, considerable changes in the character of heat transfer are observed. Out of five nanofluids under consideration in this study, the best thermal effect (up to 50%) is obtained when Al2O3 nanofluid having particle sizes ~39 nm and volume concentration of 0.1% is used. Conversely, the fluid containing TiO2 particles, 20–70 nm in size, seems to be the worst of the analysed fluid, giving only 7% heat transfer enhancement in comparison with water. However, when TiO2 nanoparticles are far smaller, very good thermal effects are obtained (23–25%). In a majority of the cases analysed, the temperature that marks the onset of film boiling is inversely proportional to concentrations of nanoparticles, which is relevant from the economic standpoint.  相似文献   

6.
Thermal conductivities and specific heat capacities of nanoparticles of Al2O3 dispersed in water and ethylene glycol as a function of the particle volume fraction and at temperatures between 298 and 338 K were measured. The steady-state coaxial cylinders method, using a C80D microcalorimeter (Setaram, France) equipped with special calorimetric vessels, was used for the thermal conductivities measurements. The heat capacities were measured with a Micro DSC II microcalorimeter (Setaram, France) with batch cells designed in our laboratory and the “scanning or continuous method.” The Hamilton–Crosser model properly accounts for the thermal conductivity of the studied nanofluids. Assuming that the nanoparticles and the base fluid are in thermal equilibrium, the experimental specific heat capacities of nanofluids are correctly justified.  相似文献   

7.

Numerical studies of laminar forced convective heat transfer and fluid flow in a 2D louvered microchannel with Al2O3/water nanofluids are performed by the lattice Boltzmann method (LBM). Eight louvers are arranged in tandem within the single-pass microchannel. The Reynolds number based on channel hydraulic diameter and bulk mean velocity ranges from 100 to 400, where the Al2O3 fraction varies from 0 to 4%. A double distribution function approach is adopted for modeling fluid flow and heat transfer. Code validations are performed by comparing the streamwise Nusselt number (Nu) profiles and Fanning friction factors of the present LBM and those of the analytical solutions. Good agreements are obtained. Simulated results show that the louver microstructure can disturb the core flow and guide coolant toward the heated walls, thus enhancing the heat transfer significantly. Furthermore, the addition of nanoparticles in microchannels can also augment the heat transfer, but it creates an unnoticeable pressure loss. With both the louver microstructure and nanofluid, a maximum overall Nu enhancement of 7.06 is found relative to that of the fully developed smooth channel.

  相似文献   

8.

The heat transfer performance and entropy analysis are done in a compact loop heat pipe (CLHP) with Al2O3/water and Ag/water nanofluid. A compact loop heat pipe having a flat square evaporator with dimensions of 34 mm (L)?×?34 mm (W)?×?19 mm (H) has been fabricated and tested for the heat load ranging from 30 to 500 W. The experimental tests are conducted by keeping the CLHP in the vertical orientation with distilled water, silver (Ag)/water and aluminium oxide (Al2O3)/water nanofluid having low volume concentrations of (0.09% and 0.12%). The effect of wall and vapour temperature, evaporator and condenser heat transfer coefficient, thermal resistance on the applied heat loads is experimentally investigated and compared. The experimental results showed that the evaporator thermal resistance is reduced by 34.70% and 20.21%, respectively, for 0.12 vol% of Ag, Al2O3 nanoparticles when compared with that of the distilled water. For the same volume concentrations of Ag, Al2O3 nanoparticles, an enhancement of 34.52%, 23.7%, 39.27% and 30.8%, respectively, observed for the convective heat transfer coefficients at the evaporator and condenser. The entropy is also reduced by 19.08% and 11.58% when Ag and Al2O3 nanofluids are used as the operating fluid. From the experimental tests, it is found that the addition of small amount of Ag nanoparticles in the working fluid enhanced the operating range by 15% when compared with that of Al2O3/water nanofluid without the occurrence of any dry-out conditions.

  相似文献   

9.

In this research, three different volume concentrations (??=?0.05, 0.1 and 0.2%) of Al2O3/water, CuO/water and Al2O3–CuO/water (50:50) nanofluids are prepared by adopting a two-step nanofluid preparation method. Al2O3 and CuO nanoparticles with the average diameter of 50 nm and 27 nm were dispersed in distilled water. The thermal conductivity and viscosity of prepared nanofluids are measured for different temperatures by using KD2 Pro thermal property analyzed and Brookfield viscometer, respectively. The effects of nanofluids on the thermal, electrical and overall efficiency of photovoltaic thermal (PVT) solar collector are also studied. The experimental results revealed that the thermal conductivity and viscosity increase with the increase in percentage volume concentration and viscosity decreases with the increase in temperature. Furthermore, the obtained maximum thermal and electrical efficiencies of a PVT solar collector for 0.2% volume concentration of hybrid nanofluids are 82% and 15%, respectively, at peak solar radiation. The highest overall efficiency of a PVT collector with .2% volume concentration of hybrid nanofluid was 97% at peak solar radiation. Results recommend that nanofluids can be used as a heat transfer in PVT solar collector.

  相似文献   

10.

Nanofluids of Li2CO3–Na2CO3–K2CO3 improved by three nano-Al2O3 samples are firstly prepared by means of two-step aqueous method to enhance thermal properties for high-temperature heat transfer, when used as heat transfer fluids and thermal energy systems for concentrating solar power systems. Specific heat of ternary carbonates containing Al2O3 of 0.2, 0.4, 0.8, 1.0, 1.4 and 2.0 mass% is measured, and nanofluids with 1.0 mass% of 20-nm Al2O3, 1.0 mass% of 50-nm Al2O3 and 0.8 mass% of 80-nm Al2O3 are selected as superior candidates. The maximum enhancement of specific heat is 18.5% in solid and 33.0% in liquid, 17.9% in solid and 22.7% in liquid, 13.2% in solid and 17.5% in liquid for nanofluids containing 20-, 50- and 80-nm Al2O3. Thermal conductivity is, respectively, improved by 23.3, 28.5 and 30.9% under the addition of Al2O3. New chemical bonds and crystals are scarcely formed in composites through FT-IR and XRD determination. SEM images certify that nano-Al2O3 are homogeneously mixed into nanofluids and this structure may be a critical incentive for enhancing thermal properties. There are no significant changes with respect to the heat flow, melting/freezing point and latent heat after the 30 circles of determination. Briefly, it can be speculated that these nanofluids will exhibit tremendous potential in the coming applications of heat transfer and thermal storage for concentrating solar power systems.

  相似文献   

11.
Journal of Thermal Analysis and Calorimetry - The present study investigates the onset of Darcy–Bénard convection in a liquid-saturated anisotropic porous medium when phases are in local...  相似文献   

12.

Viscosity plays a crucial role in the flow and heat transfer process of nanofluids. To effectively calculate and predict the changing characteristics of nanofluids viscosity, this study presents a theoretical model combining the static interface layer and dynamic Brownian motion mechanisms of spherical nanoparticles for water-based Newtonian nanofluids. The model describes the reasonable dependences of nanofluids viscosity on physical properties of nanoparticles (density, volume fraction, size) and base fluid (temperature, viscosity, density). Taking four kinds of typical water-based Newtonian nanofluids containing spherical oxide nanoparticles (Al2O3, CuO, SiO2 and TiO2) as examples, the prediction performance of different viscosity models is analyzed in detail. From the comparison studies, it is demonstrated that the new viscosity model developed in this paper can exhibit better prediction performance than many well-known theoretical models and empirical correlations. Not only do the predicted results of model agree well with the experimental data from various studies, but also the effects of different factors are reflected effectively.

  相似文献   

13.

In the present study, heat transfer and fluid flow of a pseudo-plastic non-Newtonian nanofluid over permeable surface has been solved in the presence of injection and suction. Similarity solution method is utilized to convert the governing partial differential equations into ordinary differential equations, which then is solved numerically using Runge–Kutta–Fehlberg fourth–fifth order (RKF45) method. The Cu, CuO, TiO2 and Al2O3 nanoparticles are considered in this study along with sodium carboxymethyl cellulose (CMC)/water as base fluid. Validation has been done with former numerical results. The influence of power-law index, volume fraction of nanoparticles, nanoparticles type and permeability parameter on nanofluid flow and heat transfer was investigated. The results of the study illustrated that the flow and heat transfer of non-Newtonian nanofluid in the presence of suction and injection has different behaviors. For injection and the impermeable plate, the non-Newtonian nanofluid shows a better heat transfer performance compared to Newtonian nanofluid. However, changing the type of nanoparticles has a more intense influence on heat transfer process during suction. It was also observed that in injection, contrary to the other two cases, the usage of non-Newtonian nanofluid can decrease heat transfer in all cases.

  相似文献   

14.
In order to enhance the thermal properties of turbine oil (TO), three different nanoparticles (CuO, Al2O3, and TiO2) are loaded into the TO. To measure the thermal performance of nanoparticle-based TO nanofluids at laminar flow and under constant heat flux boundary conditions, an experimental setup was applied. The obtained data clearly demonstrate the positive effect of all nanoparticles on the heat transfer rate of TO. As the most important factor, the heat transfer coefficient of the abovementioned two-phase systems is increased upon increasing both the volume concentration and the flow rate. An adaptive neuro-fuzzy inference system (ANFIS) is applied for modeling the effect of critical parameters on the heat transfer coefficient of nanoparticle-TO based nanofluids numerically. The results are compared with experimental ones for training and test data. The results suggest that the developed model is valid enough and promising for predicting the extant of the heat transfer coefficient. R2 and MSE values for all data were 0.990208751 and 108.1150734, respectively. Based on the results, it is obvious that our proposed modeling by ANFIS is efficient and valid, which can be expanded for more general states.  相似文献   

15.
Conventional heat transfer fluids such as water and ethylene glycol (EG) can be used for cooling fluids in car radiators, and have relatively poor heat transfer performance. One method for increasing heat transfer in car radiators uses nanofluids. Nanofluids as a new technology are obtained by dispersing nanoparticles on the base fluids. In the present study, CuO (60 nm) nanoparticles were used in a mixture of water/EG as a base fluid. Then, the thermal performance of a car radiator was studied. The experiment was performed for different volumetric concentrations (0.05–0.8 vol%) of nanofluids of different flow rates (4–8 lit/min) and inlet temperatures (35, 44, 54°C). The results showed that nanofluids clearly enhanced heat transfer compared to the base fluid. In the best condition, the heat transfer coefficient enhancement of about 55% compared to the base fluid was recorded.  相似文献   

16.
The heat transfer properties of synthetic oil (Therminol 66) used for high temperature applications was improved by introducing 15 nm silicon dioxide nanoparticles. Stable suspensions of inorganic nanoparticles in the non-polar fluid were prepared using a cationic surfactant (benzalkonium chloride). The effects of nanoparticle and surfactant concentrations on thermo-physical properties (viscosity, thermal conductivity and total heat absorption) of these nanofluids were investigated in a wide temperature range. The surfactant-to-nanoparticle (SN) ratio was optimized for higher thermal conductivity and lower viscosity, which are both critical for the efficiency of heat transfer. The rheological behavior of SiO(2)/TH66 nanofluids was correlated to average agglomerate sizes, which were shown to vary with SN ratio and temperature. The conditions of ultrasonic treatment were studied and the temporary decrease of agglomerate size from an equilibrium size (characteristic to SN ratio) was demonstrated. The heat transfer efficiencies were estimated for the formulated nanofluids for both turbulent and laminar flow regimes and were compared to the performance of the base fluid.  相似文献   

17.
The effect of dielectric loss on the electrorheological (ER) characteristic of dielectric nanofluids under shear was studied. When nanofluids are activated by an applied electric field, it behaves like a non-Newtonian fluid under ER effect by creating the chains of nanoparticles. ER characteristics of ZnO and Al2O3 nanofluids with various nanoparticles concentration (0.1, 0.05, 0.01 wt%) were measured. For this purpose, a solenoid-based electromagnetic (EM) transmitter was used under different propagation media including air, tap water, and salt water. The result shows that all the nanofluids exhibit pseudo-plastic behavior, while the electric field causes a significant increase in viscosity in the presence of tap water, followed by salt water. Additionally, the viscosity of nanofluid shows a high dependence on particle loading. A possible mechanism was also proposed to describe the effect of dielectric properties on the ER behavior of dielectric nanofluids.  相似文献   

18.

Present experimental investigation incorporates characterization of Al nanopowder, synthesis of Al/water nanofluids, and effect of these nanofluids on thermal performance of compact heat exchanger. Al nanoparticles are characterized using TEM and XRD. Al/water nanofluid is prepared by dispersing metal basis aluminium nanoparticles of average 100 nm size into double distilled water at two different particle volume concentrations of 0.1 and 0.2%. The nanofluids are prepared by two-step method and cetyl trimethyl ammonium bromide surfactant is used to stabilize the nanofluid. Thermo-physical properties of nanofluids at two different concentrations and their variation with fluid temperature are measured experimentally. It is examined that thermal conductivity, viscosity, and density of the nanofluid increased with the increase of volume concentrations. Furthermore, by increasing the fluid temperature, thermal conductivity is intensified, while the viscosity and density are decreased. Heat transfer parameters are strong functions of these thermo-physical properties. Therefore, comprehensive findings on heat transfer coefficient, Nusselt number, colburn factor, friction factor, and effectiveness are determined experimentally for prepared nanofluids passing under laminar conditions through single-pass cross-flow compact heat exchanger attached with multi-louvered fins.

  相似文献   

19.
Tungsten selenide belongs to the family of inorganic compounds denominated transition metal dichalcogenides (TMDCs). There is emerging interest in these compounds in the field of optoelectronics, catalysis, sensing or energy storage, among others. Most works focus on the use of these materials in their 2D form but there is scarce research on the study of TMDCs nanomaterials with one-dimensional morphology. In this work, we explore the thermophysical properties of nanofluids based on 1D-WSe2 nanostructures with the aim of studying the feasibility of these nanofluids as heat transfer fluids in concentrating solar power plants. In this respect, nanofluids with a high heat transfer rate could increase the thermal efficiency of solar power plants, which would reduce the energy dependence on fossil fuels. Nanofluids of 0.02 wt%, 0.05 wt% and 0.10 wt% WSe2 concentrations have been prepared by the two-step method considering a thermal fluid used in solar power plants as the base fluid. The results of extinction coefficient evolution, ζ potential and particle size in suspension show a high colloidal stability over time of the prepared nanofluids mainly because of the high aspect ratio of the 1D-WSe2 nanomaterial. Additionally, the one-dimensionality and length of the synthesized nanowires favors the transport of heat in controlled directions, obtaining increases in thermal conductivity with respect to the base fluid of up to 16.8% in the highest concentration nanofluid. Improvements in isobaric specific heat of up to 15.7% and heat transfer of up to 20.8% compared to the base fluid have also been found. The results of this paper provide evidence that the presence of WSe2 nanowires induces increases in the thermal properties of the fluid commonly used in concentrating solar power plants without inducing agglomeration or sedimentation problems. Therefore, the nanofluids based on 1D-WSe2 nanostructures prepared in this work have a high potential to be used as heat transfer fluids in concentrating solar power plants based on parabolic trough collectors.  相似文献   

20.
A new strategy for producing ordered polymeric films is proposed, which employs replication of interfacial instabilities. In the first step, a thin film of a monomeric fluid is brought in contact with a nonpolymerizable template layer of poly(dimethylsiloxane), and surface tension-driven convection is induced in the template liquid. In the second stage, Bénard cells replicated in the monomeric layer by a viscous drug are trapped in the solid state by UV-induced polymerization. Following this step, the template fluid is removed. The topographic patterns "frozen" in the polymeric film have lateral and vertical periodicity determined by the properties of the template fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号