首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel dynamic mixing length (DML) subgrid‐scale model for large eddy simulations is proposed in this work to improve the cutoff length of the Smagorinsky model. The characteristic mixing length (or the characteristic wave number) is dynamically estimated for the subgrid‐scale fluctuation of turbulence by the cutoff wave‐number, kc, and the dissipation wave‐number, kd. The dissipation wave number is derived from the kinetic energy spectrum equation and the dissipation spectrum equation. To prove the promise of the DML model, this model is used to simulate the lid‐driven cubical cavity with max‐velocity‐based Reynolds numbers 8850 and 12,000, the channel flows with friction‐velocity‐based Reynolds numbers 180, 395, 590, and 950, and the turbulent flow past a square cylinder at the higher Reynolds number 21,400, respectively, compared with the Smagorinsky model and Germano et al.'s dynamic Smagorinsky model. Different numerical experiments with different Reynolds numbers show that the DML model can be used in simulations of flows with a wide range of Reynolds numbers without the occurrence of singular values. The DML model can alleviate the dissipation of the Smagorinsky model without the loss of its robustness. The DML model shows some advantages over Germano et al.'s dynamic Smagorinsky model in its high stability and simplicity of calculation because the coefficient of the DML model always stays positive. The characteristic mixing length in the DML model reflects the subgrid‐scale fluctuation of turbulence in nature and thus the characteristic mixing length has a spatial and temporal distribution in turbulent flow. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In present study, the subgrid scale (SGS) stress and dissipation for multiscale formulation of large eddy simulation are analyzed using the data of turbulent channel flow at Ret = 180 obtained by direct numerical simulation. It is found that the small scale SGS stress is much smaller than the large scale SGS stress for all the stress components. The dominant contributor to large scale SGS stress is the cross stress between small scale and subgrid scale motions, while the cross stress between large scale and subgrid scale motions make major contributions to small scale SGS stress. The energy transfer from resolved large scales to subgrid scales is mainly caused by SGS Reynolds stress, while that between resolved small scales and subgrid scales are mainly due to the cross stress. The multiscale formulation of SGS models are evaluated a priori, and it is found that the small- small model is superior to other variants in terms of SGS dissipation.  相似文献   

3.
In this paper we demonstrate that the transport equation of the generalised subgrid scale (SGS) turbulent stress tensor is form-invariant but not frame-indifferent under Euclidean transformations of the frame. A new closure equation between the generalized SGS turbulent stress tensor and the resolved kinematic quantities is proposed. The closure equation at the basis of the proposed model (Two-Equation Model, TEM): a) respects the principle of the turbulence frame indifference [1]; b) takes into account both the anisotropy of the turbulence velocity scales and turbulence length scales; c) removes any balance assumption between the production and dissipation of SGS turbulent kinetic energy; d) assumes scale similarity in the definition of the second-order tensor representing the turbulent velocity scales. In the proposed model: a) the closure coefficient C which appears in the constitutive equation is uniquely determined without using Germanos dynamic procedure [2]; b) the generalized SGS turbulent stress tensor is related exclusively to the generalized SGS turbulent kinetic energy (which is calculated by means of its balance equation) and the modified Leonard tensor; c) the viscous dissipation of the generalized SGS turbulent kinetic energy is calculated by solving the balance equation. The proposed model is tested for a turbulent channel flow at Reynolds numbers (based on friction velocity and channel half-width) ranging from 180 to 2340.Received: 11 February 2004, Accepted: 20 August 2004, Published online: 22 February 2005PACS: 02.60.Cb, 47.27.Eq, 47.11. + j Correspondence to: F. Gallerano  相似文献   

4.
A new subgrid-scale (SGS) model based on partially integrated transport method (PITM) is applied to the case of a turbulent spectral non-equilibrium flow created by the mixing of two turbulence fields of differing scales: the shearless mixing layer. The method can be viewed as a continuous hybrid RANS/LES approach. In this model the SGS length scale is no longer given by the size of the discretization step, but is dynamically estimated using an additional transport equation for the dissipation rate. The results are compared to those corresponding to the classical model of Smagorinsky and to the experimental data of Veeravalli and Warhaft. A method for creating an anisotropic analytical pseudo-random field for inflow conditions is also proposed. This approach based on subgrid-scale transport modelling combined with anisotropic inlet conditions gives better results for the prediction of the shearless mixing layer.  相似文献   

5.
The flows past a circular cylinder at Reynolds number 3900 are simulated using large-eddy simulation(LES) and the far-field sound is calculated from the LES results. A low dissipation energy-conserving finite volume scheme is used to discretize the incompressible Navier–Stokes equations. The dynamic global coefficient version of the Vreman's subgrid scale(SGS) model is used to compute the sub-grid stresses. Curle's integral of Lighthill's acoustic analogy is used to extract the sound radiated from the cylinder. The profiles of mean velocity and turbulent fluctuations obtained are consistent with the previous experimental and computational results. The sound radiation at far field exhibits the characteristic of a dipole and directivity. The sound spectra display the-5/3 power law. It is shown that Vreman's SGS model in company with dynamic procedure is suitable for LES of turbulence generated noise.  相似文献   

6.
《力学快报》2022,12(4):100359
The subgrid-scale (SGS) kinetic energy has been used to predict the SGS stress in compressible flow and it was resolved through the SGS kinetic energy transport equation in past studies. In this paper, a new SGS eddy-viscosity model is proposed using artificial neural network to obtain the SGS kinetic energy precisely, instead of using the SGS kinetic energy equation. Using the infinite series expansion and reserving the first term of the expanded term, we obtain an approximated SGS kinetic energy, which has a high correlation with the real SGS kinetic energy. Then, the coefficient of the modelled SGS kinetic energy is resolved by the artificial neural network and the modelled SGS kinetic energy is more accurate through this method compared to the SGS kinetic energy obtained from the SGS kinetic energy equation. The coefficients of the SGS stress and SGS heat flux terms are determined by the dynamic procedure. The new model is tested in the compressible turbulent channel flow. From the a posterior tests, we know that the new model can precisely predict the mean velocity, the Reynolds stress, the mean temperature and turbulence intensities, etc.  相似文献   

7.
In the present work we study potential applicability of large eddy simulation (LES) method for prediction of flatness and skewness of compressible magnetohydrodynamic (MHD) turbulence. The knowledge of these quantities characterizes non-Gaussian properties of turbulence and can be used for verification of hypothesis on Gaussianity for the turbulent flow under consideration. Prediction accuracy of these quantities by means of LES method directly determines efficiency of reconstruction of probability density function (PDF) that depends on used subgrid-scale (SGS) parameterizations. Applicability of LES approach for studying of PDF properties of turbulent compressible magnetic fluid flow is investigated and potential feasibilities of five SGS parameterizations by means of comparison with direct numerical simulation results are explored. The skewness and the flatness of the velocity and the magnetic field components under various hydrodynamic Reynolds numbers, sonic Mach numbers, and magnetic Reynolds numbers are studied. It is shown that various SGS closures demonstrate the best results depending on change of similarity numbers of turbulent MHD flow. The case without any subgrid modeling yields sufficiently good results as well. This indicates that the energy pile-up at the small scales that is characteristic for the model without any subgrid closure, does not significantly influence on determination of PDF. It is shown that, among the subgrid models, the best results for studying of the flatness and the skewness of velocity and magnetic field components are demonstrated by the Smagorinsky model for MHD turbulence and the model based on cross-helicity for MHD case. It is visible from the numerical results that the influence of a choice subgrid parametrization for the flatness and the skewness of velocity is more essential than for the same characteristics of magnetic field.  相似文献   

8.
An a priori study of subgrid-scale (SGS) models for the unclosed terms in the energy equation is carried out using the flow field obtained from the direct simulation of homogeneous isotropic turbulence. Scale-similar models involve multiple filtering operations to identify the smallest resolved scales that have been shown to be the most active in the interaction with the unresolved SGSs. In the present study these models are found to give more accurate prediction of the SGS stresses and heat fluxes than eddy-viscosity and eddy-diffusivity models, as well as improved predictions of the SGS turbulent diffusion, SGS viscous dissipation, and SGS viscous diffusion.  相似文献   

9.
在湍流数值模拟方法中,大涡模拟方法可以提供丰富的大涡旋信息,已逐渐成为复杂湍流问题数值研究的重要方法。而大涡模拟中,最重要的一环是尽量准确地构建能反映流场物理本质特征的亚格子应力模型。基于该思想,将一种新型的大涡模拟亚格子应力模型-Vreman亚格子应力模型用于高雷诺数三维后台阶流动的求解,计算结果与实验结果进行对比分析结果较吻合,验证了该模型的可靠性。这是对该模型用于无任何均匀流动方向的高雷诺数复杂湍流非定常流动的首次检验,计算结果优于基于传统的Smagorinsky涡粘性的动态亚格子模型。  相似文献   

10.
The partially integrated transport modelling (PITM) method can be viewed as a continuous approach for hybrid RANS/LES modelling allowing seamless coupling between the RANS and the LES regions. The subgrid turbulence quantities are thus calculated from spectral equations depending on the varying spectral cutoff location [Schiestel, R., Dejoan, A., 2005. Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theoretical and Computational Fluid Dynamics 18, 443–468; Chaouat, B., Schiestel, R., 2005. A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Physics of Fluids, 17 (6)] The PITM method can be applied to almost all statistical models to derive its hybrid LES counterpart. In the present work, the PITM version based on the transport equations for the turbulent Reynolds stresses together with the dissipation transport rate equation is now developed in a general formulation based on a new accurate energy spectrum function E(κ) valid in both large and small eddy ranges that allows to calibrate more precisely the csgs2 function involved in the subgrid dissipation rate sgs transport equation. The model is also proposed here in an extended form which remains valid in low Reynolds number turbulent flows. This is achieved by considering a characteristic turbulence length-scale based on the total turbulent energy and the total dissipation rate taking into account the subgrid and resolved parts of the dissipation rate. These improvements allow to consider a large range of flows including various free flows as well as bounded flows. The present model is first tested on the decay of homogeneous isotropic turbulence by referring to the well known experiment of Comte-Bellot and Corrsin. Then, initial perturbed spectra E(κ) with a peak or a defect of energy are considered for analysing the model capabilities in strong non-equilibrium flow situations. The second test case is the classical fully turbulent channel flow that allows to assess the performance of the model in non-homogeneous flows characterised by important anisotropy effects. Different simulations are performed on coarse and refined meshes for checking the grid independence of solutions as well as the consistency of the subgrid-scale model when the filter width is changed. A special attention is devoted to the sharing out of the energy between the subgrid-scales and the resolved scales. Both the mean velocity and the turbulent stress computations are compared with data from direct numerical simulations.  相似文献   

11.
当大涡模拟用于研究化学反应流动时,传统的滤波方法会导致化学反应项不封闭. 为克服这 个困难,发展了条件滤波大涡模拟方法. 在选择适当的条件变量后,条件滤波的化学反 应项可以表达为一个封闭项. 但同时也带来了新的问题:条件滤波耗散或条件滤波扩散项的 不封闭. 为解决这一问题,采用了直接数值模拟方法研究了它们在大小尺度上的统计特 性. 研究结果表明:条件滤波耗散和扩散对于大尺度的依赖主要体现在大尺度标量场中扩散 层结构的影响,同时小尺度脉动的变化几乎与条件滤波扩散无关,而它对条件滤波耗散却显 现出明显的作用. 在构造条件滤波耗散的亚格子模型时,小尺度脉动的作用不容忽视.  相似文献   

12.
In this paper, a general optimal formulation for the dynamic Smagorinsky subgrid‐scale (SGS) stress model is reported. The Smagorinsky constitutive relation has been revisited from the perspective of functional variation and optimization. The local error density of the dynamic Smagorinsky SGS model has been minimized directly to determine the model coefficient CS. A sufficient and necessary condition for optimizing the SGS model is obtained and an orthogonal condition (OC), which governs the instantaneous spatial distribution of the optimal dynamic model coefficient, is formulated. The OC is a useful general optimization condition, which unifies several classical dynamic SGS modelling formulations reported in the literature. In addition, the OC also results in a new dynamic model in the form of a Picard's integral equation. The approximation tensorial space for the projected Leonard stress is identified and the physical meaning for several basic grid and test‐grid level tensors is systematically discussed. Numerical simulations of turbulent Couette flow are used to validate the new model formulation as represented by the Picard's integral equation for Reynolds numbers ranging from 1500 to 7050 (based on one half of the velocity difference of the two plates and the channel height). The relative magnitudes of the Smagorinsky constitutive parameters have been investigated, including the model coefficient, SGS viscosity and filtered strain rate tensor. In general, this paper focuses on investigation of fundamental mathematical and physical properties of the popular Smagorinsky constitutive relation and its related dynamic modelling optimization procedure. Copyright © 2005 John Wiley & Sons Ltd.  相似文献   

13.
采用大涡模拟(LES)方法,并结合动力学亚格子尺度应力(SGS)模型,通过数值求解柱坐标系下的滤波Navier-Stokes方程,研究了绕管轴旋转圆管内的湍流流动特性.为验证计算的可靠性,以及动力学SGS模型对于旋转湍流的适用性,将大涡模拟计算所得的结果,与相应的直接模拟(DNS)结果和实验数据进行了对比验证,吻合良好.进一步对旋转圆管湍流的物理机理进行了探讨,研究了湍流特性随旋转速率的变化规律.当旋转速率增加时,湍流流动有层流化的发展趋势.基于湍动能变化的关系,分析了旋转效应对湍流脉动生成的抑制作用.  相似文献   

14.
A dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations.  相似文献   

15.
A linear eddy model for subgrid mixing and combustion has been coupled to a large eddy simulation of the turbulent nonpremixed piloted jet flame (Sandia Flame D). For the combustion reaction, simplified, single-step, irreversible, Arrhenius kinetics are used. The large scale and the subgrid structure of the flow are compared with experimental observations and, where appropriate, with a flamelet model of the flame. The main objective of this work is to demonstrate the feasibility of the LES-LEM approach for determining the structure of the subgrid scalar dissipation rate and the turbulence-chemistry interactions. The results for the large- and subgrid-scale structure of the flow show a reasonable agreement with the experimental observations.  相似文献   

16.
The application of large eddy simulation (LES) to turbulent reacting flow calculations is faced with several closure problems. Suitable parametrizations for filtered reaction rates for instance are hardly available in general. A way to overcome these problems is investigated here. This is done by extending LES equations for filtered velocities and scalars (mass fractions of species and temperature) to equations that involve subgrid scale (SGS) fluctuations. Such equations are called filter density function (FDF) methods because they determine the FDF, which is essentially the probability density function of SGS variables. The FDF model considered involves only three parameters: C 0 that controls the generation of velocity fluctuations and two parameters which determine the relaxation of velocity and scalar fluctuations. The consideration of this model may be seen as the analysis of a limiting case: the implications of the most simple equations for the dynamics of SGS fluctuations are investigated in this way. These equations were proved recently by various simulations. Here, the FDF model is used analytically to improve simpler methods. Existing models for the SGS stress tensor in velocity LES equations and the diffusion coefficient in scalar FDF equations are generalized in this way. The advantages of these models compared to existing ones are pointed out. These investigations provide further evidence for the suitability of the FDF model considered and they provide its parameters. A theoretical value C 0 = 19/12 is derived, which agrees very well with the results of direct numerical simulation. This estimate implies the same value for the universal Kolmogorov constant of the energy spectrum, which is consistent with the results of many measurements. The other two model parameters can be obtained then by dynamic procedures. Therefore, the closure problems of LES equations are overcome in this way such that adjustable parameters are not involved.  相似文献   

17.
A Lagrangian dynamic formulation of the mixed similarity subgrid (SGS) model for large-eddy simulation (LES) of turbulence is proposed. In this model, averaging is performed over fluid trajectories, which makes the model applicable to complex flows without directions of statistical homogeneity. An alternative version based on a Taylor series expansion (nonlinear mixed model) is also examined. The Lagrangian models are implemented in a finite difference code and tested in forced and decaying isotropic turbulence. As comparison, the dynamic Smagorinsky model and volume-averaged formulations of the mixed models are also tested. Good results are obtained, except in the case of low-resolution LES (323) of decaying turbulence, where the similarity coefficient becomes negative due to the fact that the test-filter scale exceeds the integral scale of turbulence. At a higher resolution (643), the dynamic similarity coefficient is positive and good agreement is found between predicted and measured kinetic energy evolution. Compared to the eddy viscosity term, the similarity or the nonlinear terms contribute significantly to both SGS dissipation of kinetic energy and SGS force. In order to dynamically test the accuracy of the modeling, the error incurred in satisfying the Germano identity is evaluated. It is found that the dynamic Smagorinksy model generates a very large error, only 3% lower than the worst-case scenario without model. Addition of the similarity or nonlinear term decreases the error by up to about 50%, confirming that it represents a more realistic parameterization than the Smagorinsky model alone.  相似文献   

18.
A new wall-damping function, based on the Kolmogorov velocity scale, for large eddy simulation (LES) is proposed, which accounts for the near-wall effect. To calculate the Kolmogorov velocity scale, uε, the dissipation rate of turbulent energy, ε, is needed. In LES, however, the dissipation rate is generally not solved, unlike in the Reynolds averaged Navier-Stokes (RANS) simulations, e.g., k-ε models. Although, in some previous studies, the dissipation rate of the subgrid-scale (SGS) turbulent energy, εSGS, is used instead of ε in calculating the Kolmogorov velocity scale, the scale obtained using such a method overly depends on the grid resolution employed and is generally inappropriate. Accordingly, the wall-damping function using the incorrect velocity scale also depends on the grid resolution and gives an inadequate wall effect. This is because εSGS contains only the components in the scale smaller than the grid-filter width, which obviously varies with the grid resolution employed. In this study, to overcome this problem, we propose a method for estimating the Kolmogorov velocity scale with a technique of conversion in LES, and the estimated one is utilized in the wall-damping function. The revised wall-damping function for LES is tested in channel flows and a backward-facing step flow. The results show that it yields a proper near-wall effect in all test cases which cover a wide range of grid resolution and Reynolds numbers. It is also shown that all three kinds of SGS models incorporating the present wall-damping function provide good predictions, and it is effective both in one-equation and 0-equation SGS models. These results suggest that the use of the proposed wall-damping function is a refined and versatile near-wall treatment in LES with various kinds of SGS models.  相似文献   

19.
In the large-eddy simulation frame for non-isothermal turbulent flow, the Mixed Scale Model is extended to the subgrid diffusivity, in order to dissociate the computation of subgrid viscosity and diffusivity. The identification of the subgrid thermal dissipation term in the subgrid flux transport equation leads to an algebraic expression of the subgrid diffusivity. This diffusive model, as the Smagorinsky one, is weighted by a model based on scale similarity. This expression leads to satisfactory results when applied to a buoyant turbulent flow in a differentially heated cavity.  相似文献   

20.
This work is concerned with the investigation of fluid-mechanical behaviour and the performance of different subgrid-scale models for LES in the numerical prediction of a confined axisymmetrical bluff-body flow. Four subgrid-scale turbulence models comprising the Smagorinsky model, Dynamic Smagorinsky model, WALE model and subgrid turbulent kinetic energy model, are validated and compared directly against the experimental data. Two different mesh counts are used for the LES studies, one with a higher mesh resolution in the shear layer than the other. It is found that increasing the mesh resolution improves the time-averaged fluctuating velocity profiles, but has less effect on the time-averaged filtered velocity profiles. A comparison against experiment shows that the recirculation zone length is well predicted using LES. The accuracy of the four different subgrid scale models is then assessed by comparing the LES results using the dense mesh with the experiment. Comparisons with the time-averaged axial and radial velocity profiles demonstrate that LES displays good agreement with the experimental data, with the essential flow features captured both qualitative and quantitatively. The subgrid velocity also matches well with the experimental results, but a slight underprediction of the inner shear layer is observed for all subgrid models. In general, it is found that the Smagorinsky and WALE models are more dissipative than the Dynamic Smagorinsky model and subgrid TKE model. Comparison of the spectra against the experiment shows that LES can capture dominant features of the turbulent flow with reasonable accuracy, and weak spectral peaks related to the Kevin-Helmholtz instability and helical vortex shedding are present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号