首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Multi-walled carbon nanotubes (MWCNT)/poly(methyl methacrylate) (PMMA) nanocomposites were synthesized by the in situ reversible addition-fragmentation chain transfer (RAFT) polymerization of methyl methacrylate (MMA) in the presence of MWCNTs, at which the bulk polymer was grafted onto the surface of nanotubes through the ??grafting through?? strategy. For this purpose, MWCNTs were formerly functionalized with polymerizable MMA groups. MMA and PMMA-grafted MWCNTs were characterized by Fourier-transform infrared spectroscopy, Raman, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). Dissolution of nanotubes was examined in chloroform solvent and studied by UV?Cvis spectroscopy. Thermogravimetric and degradation behavior of prepared nanocomposites was investigated by TGA. MWCNTs had a noticeable boosting effect on the thermal stability of nanocomposites. TGA thermograms showed a two-step weight loss pattern for the degradation of MWCNT-PMMA/PMMA nanocomposites which is contrast with neat PMMA. Introduction of MWCNTs also improved the dynamic mechanical behavior and electrical conductivity of nanocomposites. TEM micrograph of nanocomposite revealed that the applied methods for functionalization of nanotubes and in situ synthesis of nanocomposites were comparatively successful in dispersing the MWCNTs in PMMA matrix.  相似文献   

2.
In this paper, we present results for polymer nanocomposites of poly‐ (methyl methacrylate) (PMMA) and amide‐functionalized SWNTs. The results demonstrate that even at very low loadings, 1 wt % (0.5 vol %), the mechanical and electrical properties are significantly improved. The improvement over PMMA properties exceeds the theoretical bounds for composites with the same volume fraction loading of randomly oriented, straight, individually dispersed nanotubes. The modeling and experimental results thus suggest that the nanotube bundles are well dispersed in the polymer matrix, that the functionalization significantly improves interaction with polymer, and that the interphase formed has improved mechanical properties over that of the matrix material. Loss modulus results indicate a significant difference between functionalized and nonfunctionalized tubes in the composite. Functionalized tubes result in a composite in which relaxation mechanisms are shifted by 30 °C from that of the matrix material, indicating extensive interphase regions and absence of PMMA with bulk properties. Unfunctionalized composites demonstrate a broadening of relaxation modes, but still retain the signature of bulk PMMA properties. These data suggest a morphological difference with a discrete interphase layer in unfunctionalized composites and a fully transformed matrix in the case of functionalization. This difference is consistent with electrical and mechanical property data. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2269–2279, 2005  相似文献   

3.
Summary: A facile and organic‐solvent‐free method for preparing thermoprocessable multiwalled carbon nanotube (MWCNT)‐filled thermoplastics is presented. MWCNTs are oxidized, neutralized, and then assembled with cationic soap‐free poly(methyl methacrylate) (PMMA) particles directly in water. The spontaneous electrostatic coupling between the negatively charged MWCNTs and positively charged PMMA particles, and the viscoelastic and thermomechanical behavior of the nanocomposites, are investigated. The electrostatic coupling interactions improve the dispersion of nanotubes and facilitate the formation of filler networks in the polymer matrix.

Preparation of nanocomposites of oxidized MWCNTs and positively charged PMMA particles through electrostatic assembly.  相似文献   


4.
Composites of poly(methyl methacrylate) (PMMA) with multi-walled carbon nanotubes (MWCNT) of varying aspect ratio and carboxylic acid functionality were prepared using melt mixing. The extent of dispersion and distribution of the MWCNTs in the PMMA matrix was investigated using a combination of high-resolution transmission electron microscopy (HRTEM), wide-angle X-ray diffraction (XRD) and Raman spectroscopy. The electrical resistivity and oscillatory shear rheological properties of the composites were measured as a function of MWCNT geometry, functionality, and concentration. The fundamental ballistic conductance of the pristine free-standing MWCNTs was investigated using a mechanically controlled break-junction method. The electrical conductivity of PMMA was enhanced by up to 11 orders of magnitude for MWCNT concentrations below 0.5 wt.%. MWCNTs having higher aspect ratio, above 500, or functionalized with carboxylic acid groups readily formed rheological percolated networks with thresholds, determined from a power law relationship, of 1.52 and 2.06 wt.%, respectively. The onset of pseudo-solid-like behaviour and network formation is observed as G′, η∗, and tan δ−1 are independent of frequency as MWCNT loading increased. Sufficiently long and/or functionalized tubes are required to physically bridge or provide interfacial interactions with PMMA to alter polymer chain dynamics. Carboxylic acid functionalization disrupts the crystalline order of MWCNTs due to a loss of π-conjugation and electron de-localisation of sp2 C-C bonds resulting in non-ballistic electron transport in these tubes, irrespective of how highly dispersed they are in the PMMA matrix.  相似文献   

5.
Silica nanoparticles of various sizes have been incorporated by melt compounding in a poly(methyl methacrylate) (PMMA) matrix to enhance its thermal and mechanical properties. In order to improve nanoparticles dispersion, PMMA grafted particles have been prepared by atom transfer radical polymerization (ATRP) from well-defined silica nanoparticles. This strategy was expected to ensure compatibility between both components of the PMMA nanocomposites. TEM analysis have been performed to evaluate the nanosilica dispersion whereas modified and non-modified silica/PMMA nanocomposites thermal stability and mechanical properties have been investigated by both thermogravimetric and dynamical mechanical analysis.  相似文献   

6.
Graft copolymer of natural rubber and poly(methyl methacrylate) (NR‐g‐PMMA) was prepared using semi‐batch emulsion polymerization technique via bipolar redox initiation system. It was found that the grafted PMMA increased with the increase of methyl methacrylate (MMA) concentration used in the graft copolymerization. The NR‐g‐PMMA was later used to prepare thermoplastic vulcanizates (TPVs) by blending with PMMA through dynamic vulcanization technique. Conventional vulcanization (CV) and efficient sulphur vulcanization (EV) systems were studied. It was found that the CV system provided polymer melt with lower shear stress and viscosity at a given shear rate. This causes ease of processability of the TPVs via extrusion and injection molding processes. Furthermore, the TPVs with the CV system showed higher ultimate tensile strength and elongation. The results correspond to the morphological properties of the TPVs. That is, finer dispersion of the small vulcanized rubber particles were observed in the PMMA matrix. Various blend ratios of the NR‐g‐PMMA/PMMA blends using various types of NR‐g‐PMMA (i.e. prepared using various percentage molar ratios of NR and MMA) were later studied via dynamic vulcanization by a conventional sulphur vulcanization system. It was found that increasing the level of PMMA caused increasing trend of the tensile strength and hardness properties but decreasing level of elongation properties. Increasing level of the grafted PMMA in NR molecules showed the same trend of mechanical properties as in the case of increasing concentration of PMMA used as a blend component. From morphological studies, two phase morphologies were observed with a continuous PMMA phase and dispersed elastomeric phase. It was also found that more finely dispersed elastomeric phase was obtained with increasing the grafted PMMA in the NR molecules. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
《先进技术聚合物》2018,29(1):294-301
In this work, we showed how the functionalization of multiwall carbon nanotubes (MWCNT) by nitric acid (HNO3) and their predispersion into poly (butylene terephthalate) (PBT) improved the through‐plane electrical conductivity and mechanical properties of co‐continuous morphology polyvinylidene fluoride (PVDF)/poly (ethylene terephthalate) (PET)/carbon black (CB)/graphite (GR)/MWCNT nanocomposites. First, when MWCNT were functionalized with HNO3 then premixed with PBT, they showed no aggregations inside the PBT matrix due to their improved interfacial interactions and chemical compatibility with the PBT matrix. Then, when PBT/(HNO3‐functionalized MWCNT) mixture was added in small quantities to (PET/PVDF)/(CB/GR) composites, it decreased significantly their through‐plane resistivity and enhanced their impact and flexural properties. Its synergistic effect also led to the best proton exchange membrane fuel cell bipolar plate prototypes (smoother surface, without any cracks).  相似文献   

8.
Due to the importance in economic and environmental benefits, marine biomass has gained increasing attention in recent years. In this work, marine biomass-based materials were prepared and characterized. Highly reinforcing cellulose nanocrystals (CNCs) with length of 1–2 μm and aspect ratio of ~75 were extracted from tunicates (t-CNCs), and CNCs with length of 100–300 nm and aspect ratio of ~15 from cotton (c-CNCs) were presented for comparison. In order to enhance interfacial interactions between CNCs and rubber, modification of natural rubber (NR) was conducted via epoxidation reaction to obtain epoxidized NR (ENR). Fully bio-based rubber nanocomposites were produced by latex mixing. Compared with NR nanocomposites, hydrogen bonding formed between ENR and CNCs, which led to homogeneous dispersion of CNCs and enhanced interfacial adhesion between them. Moreover, t-CNCs with longer length and larger aspect ratio facilitate filler entanglements, which led to higher reinforcing efficiency. Consequently, both hydrogen bonding and filler entanglements contributed to the improved mechanical properties of ENR/t-CNCs nanocomposites.  相似文献   

9.
Core–shell carboxyl‐functionalized multiwall carbon nanotube (c‐MWCNT)/poly(m‐aminophenol) (PmAP) nanocomposite were prepared through in‐situ polymerization of m‐aminophenol (m‐AP) in the presence of MWCNTs, and explicated as a dielectric material for electronic applications. The formation of thin PmAP layer on individual c‐MWCNT with excellent molecular level interactions at interfaces was confirmed by morphological and spectroscopic analyses. Here we conducted a comparative study of the dielectric performances of PmAP based nanocomposite films with pristine MWCNTs and c‐MWCNTs as fillers. Compared to PmAP/MWCNT nanocomposites, the PmAP/c‐MWCNT nanocomposites exhibited higher dielectric permittivity and lower dielectric loss. The well dispersed c‐MWCNTs in PmAP/c‐MWCNT nanocomposite produce huge interfacial area together with numerous active polarized centers (crystallographic defects), which in turn intensified the Maxwell‐Wagner‐Sillars (MWS) effect based on excellent molecular level interactions and thus, produce large dielectric permittivity (8810 at 1 kHz). The percolation threshold of PmAP/c‐MWCNT nanocomposites is found lower than that of the PmAP/MWCNT nanocomposites, which could be attributed to homogeneous distribution of c‐MWCNTs and strong c‐MWCNT//PmAP interfacial interactions in the nanocomposites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Novel water-soluble amphiphilic copolymers (poly[(stearyl methacrylate)-stat-([2-(methacryloyloxy)ethyl] trimethyl ammonium iodide)]) for dispersing multi-walled carbon nanotubes (MWCNTs) were used to carry out in situ methyl methacrylate (MMA) polymerization. The morphology of the poly(methyl methacrylate)/MWCNT composites and the dispersion of the MWCNTs were analyzed by transmission electron microscopy. The dispersion of multi-walled carbon nanotubes in the composites was excellent for cationic SMA (stearyl methacrylate) copolymers, even at high MWCNT loading (6.0 wt.%). The mechanical properties and electrical and thermal conductivities of the composites were also analyzed. Mechanical properties were improved by MWCNTs; the strain at break values remained stable up to 6.0 wt.% MWCNT loading. Both electrical and thermal conductivities were improved by the addition of MWCNTs.  相似文献   

11.
In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated multi-walled carbon nanotubes (NH-MWNTs) and the physical and rheological properties of the NH-MWNTs–g-PMMA nanocomposites were investigated. The graft reaction of NH-MWNTs and the PMMA matrix was confirmed from the change of the N1S peaks, including those of amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The thermal and mechanical properties of the NH-MWNT–g-PMMA nanocomposites were enhanced by the graft reaction between NH-MWNTs and PMMA matrix. In addition, the viscosity of the nanocomposites was increased with the addition of NH-MWNTs. Storage (G′) and loss modulus (G″) were significantly increased by increase in the NH-MWNT content compared to acid-treated MWNTs/PMMA nanocomposites. This increase was attributed to the strong interaction by the grafting reaction between NH-MWNTs and the PMMA matrix.  相似文献   

12.
This work addresses the optimization of the morphology, thermal, and mechanical properties of polypropylene/layered double hydroxide (LDH) nanocomposites. For this, the nanofillers were modified by a calcination rehydration process using two surfactants, sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate, respectively. The nanofillers were characterized at each step of the modification process by thermal gravimetry, X‐ray diffraction, and Infra red spectroscopy. Furthermore, the impact of anionic modifiers on the filler surface energy and on the interactions toward water was analyzed. Polypropylene (PP)/LDH nanocomposites were then prepared by a melt intercalation process and a high molar mass maleic anhydride functionalized polypropylene (PPgMA) was introduced as a compatibilizer. The dispersion of LDH in the PP matrix was characterized and the thermal and mechanical properties of the corresponding nanocomposites were determined and discussed as a function of the filler modification, of the nanocomposite morphology, and of the filler/matrix interfacial properties. The nanocomposites prepared from SDS modified LDH and PPgMA exhibited superior properties thanks to an optimized filler dispersion state and improved interfacial interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 782–794  相似文献   

13.
In order to achieve dramatic improvements in the performance of rubber materials, the development of carbon nanotube (CNT)‐reinforced rubber composites was attempted. The CNT/natural rubber (NR) nanocomposite was prepared through solvent mixing on the basis of pretreatment of CNTs. Thermal properties, vulcanization characteristics, and physical and mechanical properties of the CNT/NR nanocomposites were characterized in contrast to the carbon black (CB)/NR composite. Through the addition of the CNTs treated using acid bath followed by ball milling with HRH (hydrated silica, resorcinol, and hexamethylene tetramine) bonding systems, the crystallization melting peak in differential scanning calorimetry (DSC) curves of NR weakened and the curing rate of NR slightly decreased. Meanwhile, the over‐curing reversion of CNT/NR nanocomposites was alleviated. The dispersion of the treated CNTs in the rubber matrix and interfacial bonding between them were rather good. The mechanical properties of the CNT‐reinforced NR showed a considerable increase compared to the neat NR and traditional CB/NR composite. At the same time, the CNT/NR nanocomposites exhibited better rebound resilience and dynamic compression properties. The storage modulus of the CNT/NR nanocomposites greatly exceeds that of neat NR and CB/NR composites under all temperature regions. The thermal stability of NR was also obviously improved with the addition of the treated CNTs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The recent development in telecommunication technology has led electromagnetic interference (EMI) to a serious threat to both electronic devices and living beings. In this work, we designed a highly efficient EMI shielding material by taking advantage of both carbonaceous hybrid filler and double percolation phenomenon. Here, a flexible, lightweight microwave absorbing conductive polymer composite was fabricated by employing poly (ethylene‐co‐methyl acrylate) and ethylene octene copolymer (EMA/EOC) binary blend as the matrix and multiwall carbon nanotube carbon black (MWCNT/CB) hybrid filler as the conductive moiety. We investigated the effect of MWCNT content in the hybrid composite on mechanical, thermomechanical, electrical, and shielding efficiency. A total EMI shielding efficiency of ?37.4 dB in the X band region was attained with 20 wt% hybrid filler containing 50 wt% MWCNT along with promising mechanical properties.  相似文献   

15.
This report describes a new route to covalently bonded polymer–graphene nanocomposites and the subsequent enhancement in thermal and mechanical properties of the resultant nanocomposites. At first, the graphite is oxidized by the modified Hummers method followed by functionalization with Octadecylamine (ODA). The ODA functionalized graphite oxides are reacted with methacryloyl chloride to incorporate polymerizable ? C?C? functionality at the nanographene platelet surfaces, which were subsequently employed in in situ polymerization of methylmethacrylate to obtain covalently bonded poly(methyl methacrylate) (PMMA)–graphene nanocomposites. The obtained nanocomposites show significant enhancement in thermal and mechanical properties compared with neat PMMA. Thus, even with 0.5 wt % graphene nanosheets, the Tg increased from 119 °C for neat PMMA to 131 °C for PMMA–graphene nanocomposite, and the respective storage modulus increased from 1.29 to 2 GPa. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4262–4267, 2010  相似文献   

16.
The aim of this work is to study the influence of the filler fraction and that of the filler/matrix interfacial adhesion on the mechanical properties and on the fracture behaviour of a poly(methyl methacrylate) PMMA (for injection moulding). The variation of the tensile and flexural mechanical properties with the filler volume fraction was determined. The changes in the fracture behaviour produced by the fillers were studied by evaluating the KIC and GIC parameters of the LEFM (Linear Elastic Fracture Mechanics) by carrying out tests with SENB geometry at room temperature and low strain rates. After fracture surfaces examination by SEM (Scanning Electron Microscopy), it was found that the surface treatment had been rather effective and that the fracture toughening mechanism was multiple crazing.  相似文献   

17.
The first observation of bulk phase separation in immiscible natural rubber (NR)/poly(methyl methacrylate) (PMMA) film using atomic force microscopy (AFM) is reported. Three different forms of AFM measurements: topographic, friction force imaging, and nanoindentation have been effectively used to investigate combined morphological and compositional mapping of the NR/PMMA system. The fracture temperature during sample microtoming and material physical properties could be responsible for the observed topographic contrast. The stronger contrast of friction imaging, relative to topographic imaging, is ascribed to local variations in mechanical properties of the phase-separated domains. Friction force imaging associated with nanoindentation response, performed under AFM force mode, highlights the AFM's ability for probing local friction, adhesion, and elastic properties, and for compositional mapping of heterogeneous polymer film. The resulting friction force imaging along with the response of the nanoindentation are in good agreement, indicating that PMMA exists mainly near the modified NR surface.  相似文献   

18.
The thermomechanical behavior of polymer nanocomposites is mostly governed by interfacial properties which rely on particle–polymer interactions, particle loading, and dispersion state. We recently showed that poly(methyl methacrylate) (PMMA) adsorbed nanoparticles in poly(ethylene oxide) (PEO) matrices displayed an unusual thermal stiffening response. The molecular origin of this unique stiffening behavior resulted from the enhanced PEO mobility within glassy PMMA chains adsorbed on nanoparticles. In addition, dynamic asymmetry and chemical heterogeneities existing in the interfacial layers around particles were shown to improve the reinforcement of composites as a result of good interchain mixing. Here, the role of chain rigidity in this interfacially controlled reinforcement in PEO composites is investigated. We show that particles adsorbed with less rigid polymers improve the mechanical properties of composites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 9–14  相似文献   

19.
The effects of methyl methacrylate (MMA) grafting and in situ formation of silica particles on the morphology and mechanical properties of natural rubber latex (NRL) were investigated. MMA grafting on NRL was carried out using cumyl hydroxy peroxide/tetraethylene pentamine (CHPO/TEPA) as a redox initiator couple. The grafting efficiency of the grafted NR was determined by solvent extractions and the grafted NRL was then mixed with tetraethoxysilane (TEOS), a precursor of silica, coated by adherence to a glass surface to form a film and cured at 80°C. The resultant products were characterized by FT‐IR and transmission electron microscopy. The influence of varying the MMA monomer weight ratio on the surface morphology of the composites was investigated by scanning electron and atomic force microscopy. The PMMA (poly MMA) grafted NRL particles were obtained as a core/shell structure from which the NR particles were the core seed and PMMA was a shell layer. The silane was converted into silica particles by a sol–gel process which was induced during film drying at 80°C. The silica particles were fairly evenly distributed in the ungrafted NR matrix but were agglomerated in the grafted NR matrix. The root‐mean‐square roughness increased with an increasing weight ratio of MMA in the rubber. The in situ silica particles in the grafted NR matrix slightly increased both the modulus and the tear strength of the composite film. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Methyl‐methacrylate‐grafted natural rubber was prepared by free radical polymerization of methyl methacrylate in natural rubber latex, and their structure and dynamics were investigated by dynamic mechanical analysis and solid‐state nuclear magnetic resonance (NMR). Samples were prepared by chemical initiation and high‐energy radiation. The changes of glass transition temperature and tan δ max with different total poly(methyl methacrylate (PMMA) content are reported. The effect of the change in composition in copolymers on tan δ peak width, tan δ max, and area under the tan δ curve are used to understand the miscibility and damping properties. Solid‐state 13C‐NMR measurements were carried out to determine several relaxation time parameters, such as rotating frame and laboratory frame proton and carbon relaxation times. Cross polarization times and carbon relaxation times were interpreted based on the changes in the molecular motion. Proton relaxation times were interpreted based on the heterogeneity of the matrix. Results confirmed phase separation and a presence of an interfacial region. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1141–1153, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号