首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Conventional ground-wheeled vehicles usually have poor trafficability, low efficiency, a large amount of energy consumption and possible failure when driving on soft terrain. To solve this problem, this paper presents a new design of transformable wheels for use in an amphibious all-terrain vehicle. The wheel has two extreme working statuses: unfolded walking-wheel and folded rigid wheel. Furthermore, the kinematic characteristics of the transformable wheel were studied using a kinematic method. When the wheel is unfolded at walking-wheel status, the displacement, velocity and acceleration of the wheel with different slip rates were analyzed. The stress condition is studied by using a classic soil mechanics method when the transformable wheel is driven on soft terrain. The relationship among wheel traction, wheel parameters and soil deformation under the stress were obtained. The results show that both the wheel traction and trafficability can be improved by using the proposed transformable wheel. Finally, a finite element model is established based on the vehicle terramechanics, and the interaction result between the transformable wheel and elastic–plastic soil is simulated when the transformable wheel is driven at different unfold angles. The simulation results are consistent with the theoretical analysis, which verifies the applicability and effectiveness of the transformable wheel developed in this paper.  相似文献   

2.
The effect of velocity on rigid wheel performance   总被引:1,自引:0,他引:1  
A simulation model to predict the effect of velocity on rigid-wheel performance for off-road terrain was examined. The soil–wheel simulation model is based on determining the forces acting on a wheel in steady state conditions. The stress distribution at the interface was analyzed from the instantaneous equilibrium between wheel and soil elements. The soil was presented by its reaction to penetration and shear. The simulation model describes the effect of wheel velocity on the soil–wheel interaction performances such as: wheel sinkage, wheel slip, net tractive ratio, gross traction ratio, tractive efficiency and motion resistance ratio. Simulation results from several soil-wheel configurations corroborate that the effect of velocity should be considered. It was found that wheel performance such as net tractive ratio and tractive efficiency, increases with increasing velocity. Both, relative wheel sinkage and relative free rolling wheel force ratio, decrease as velocity increases. The suggested model improves the performance prediction of off-road operating vehicles and can be used for applications such as controlling and improving off-road vehicle performance.  相似文献   

3.
Off-road vehicle performance is strongly influenced by the tire-terrain interaction mechanism. Soft soil reduces traction and significantly modifies vehicle handling; therefore tire dynamics plays a strong role in off-road mobility evaluation and needs to be addressed with ad-hoc models. Starting from a semi-empirical tire model based on Bekker–Wong theory, this paper, analyzes the performance of a large four wheeled vehicle driving on deformable terrain. A 14 degree of freedom vehicle model is implemented in order to investigate the influence of torque distribution on tractive efficiency through the simulation of front, rear, and all wheel drive configuration. Results show that optimal performance, regardless vertical load distribution, is achieved when torque is biased toward the rear axle. This suggests that it is possible to improve tractive efficiency without sacrificing traction and mobility. Vehicle motion is simulated over dry sand, moist loam, flat terrain and inclined terrain.  相似文献   

4.
A comprehensive method for prediction of off-road driven wheel performance is presented, assuming a parabolic wheel–soil contact surface. The traction performance of a driven wheel is predicted for both driving and braking modes. Simulations show significant non-symmetry of the traction performance of the driving and braking wheels. The braking force is significantly greater than the traction force reached in the driving mode. In order to apply the suggested model for prediction of the traction performance of a 4WD vehicle, the load transfer effect was considered. Simulated traction performances of front and rear driven wheels differ significantly, due to the load transfer. In the driving mode, the rear driven wheel develops a net traction force greater than that of the front wheel. On the other hand, in the braking mode the front driven wheel develops a braking force significantly greater than that of the rear driven wheel due to a pushed/pulled force affected by the load transfer. The suggested model was successfully verified by the data reported in literature and by full-scale field experiments with a special wheel-testing device. The developed approach may improve the prediction of off-road multi-drive vehicle traction performance.  相似文献   

5.
This study aims to develop a wheel-soil interaction model for a lightweight wheeled vehicle by measuring the normal stress distribution beneath the wheel. The main contribution of this work is to clarify the wheel-soil interaction using a wheel testbed that equips multiple sensory systems. An in-wheel sensor accurately measures the normal stress distribution as well as the contact angles of the wheel. Particle image velocimetry with a standard off-the-shelf camera analyzes soil flow beneath the wheel. The proposed model for the normal stress distribution is formulated based on these experimental data and takes into account the following phenomena for the lightweight vehicles that have not been considered in the classical model: (1) the normal stress distribution takes the form of a Gaussian curve; (2) the normal stress distribution concentrates in the front region of the wheel contact patch; (3) the distribution is divided into two areas with the boundary determined by the maximum normal stress angle; and (4) the maximum normal stress exponentially decreases as the slip ratio increases. Then, the proposed model is experimentally validated. Furthermore, a simulation study for the wheel driving characteristics using the proposed model confirms the accuracy of the proposed model.  相似文献   

6.
Most of the current lunar rover vehicle wheels are inconvenient for changing broken wheels and have poor shock absorbing in driving, so they cannot be used to carry people on the moon. To meet the demands for manned lunar transportation, a new wheel possessing a woven metal wire mesh tire and using hub-rim combination slide mechanism is designed in this article. The characteristics of the new wheel is analyzed by comparing with the same-size conventional rover wheels after demonstrating the validity of FEM simulation. The new wheel possesses lighter structure and superior shock absorbing. It also provides stronger traction because the deformation of the designed wheel increases the contact area between the tire and lunar terrain. In order to establish an on-line soil parameter estimation algorithm for low cohesion soil, the stress distribution along a driven deformable wheel on off-road terrain is simplified. The basic mechanics equations of the interaction between the wheel and the lunar soil can be used for analytical analysis. Simulation results show that the soil estimation algorithm can accurately and efficiently identify key soil parameters for loose sand.  相似文献   

7.
To control speed and wheel slip for severe conditions of tire-surface interaction is a challenging task in the design of traction control system for electric vehicles with off-road capability. In this regard, the present paper focuses on a specific traction control for an electric vehicle with four individual in-wheel motors over icy road. The study demonstrates that a proper integration of the speed controller and wheel slip controller can essentially improve the mobility of the vehicle in the cases of acceleration and slope climbing. The paper discusses relevant case studies with particular attention given to the system architecture (sliding mode and PID control methods), extremum-seeking algorithm for maximum tire-road friction and corresponding slip value, and experimental validation of the tire model used in the controller with the help of the Terramechanics Rig in the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Polytechnic Institute and State University.  相似文献   

8.
点接触润滑粗糙表面滑动摩擦力的预测研究   总被引:1,自引:5,他引:1  
在整个润滑区域内基于统一Reynolds方程的混合润滑模型,根据流变模型计算流体摩擦力,根据边界膜极限剪应力模型计算微突体接触摩擦力,二者相加得到混合润滑摩擦力.分析了粗糙度幅值和纹理对摩擦系数的影响以及非牛顿流变模型对流体摩擦系数的影响.模拟跨越整个润滑区,即弹流润滑、混合润滑和边界润滑,得到完整的Stribeck曲线.结果表明,表面越粗糙,混合润滑的摩擦系数越大,弹流润滑和边界润滑时粗糙度幅值影响很小.交叉斜纹的润滑效果优于横向纹理.不同极限剪应力流变模型计算的摩擦系数相差不大.  相似文献   

9.
A work optimization strategy is combined with algorithms within the vehicle-terrain interface (VTI) model to maximize the traction of a four-wheel vehicle operating on loose dry sand. The optimization model distributes traction among the steered and non-steered wheels with the work optimum coefficient (WOC) of each wheel treated as an independent design objective. Drawbar pull (DBP), motion resistance (MR), longitudinal traction coefficient (LTC), lateral force coefficient (LFC), tire deflection, and wheel slip are key parameters that appear in the VTI model for traction performance analysis. The analysis includes wheels of different diameters, widths, heights, and inflation pressures, under variable wheel slips. A multi-objective optimization problem is formulated over a thirteen-dimensional search space bounded by eight design constraints. The generalized reduced gradient method is used to predict optimal values of the design variables as well as ground and traction parameters such as DBP, MR, LTC, and LFC for maximum slope climbing efficiency. The WOCs are maximized for lateral slip angles between 0° and 24° to find a set of Pareto optimal solutions over a wide range of weight factors. A method to apply the optimization results for predicting vehicle performance and traction control on dry sand is presented and discussed.  相似文献   

10.
This paper presents the effects of different wheel grouser shapes on the traction performance of a grouser wheel traveling on sandy terrain. Grouser wheels are locomotion gears that allow small and lightweight exploration rovers to traverse on the loose sand on extraterrestrial surfaces. Although various grouser shapes have been analyzed by some research groups, a more synthetic and direct comparison of possible grousers is required for practical applications. In this study, we developed a single wheel testbed and experimentally investigated the effects of four grouser shapes (parallel, slanted, V-shaped, and offset V-shaped) on the traction performance of linear movement on flat sand. The wheel slip, sinkage, traction and side force acting on the wheel axle, the wheel driving torque, and the efficiency of each wheel were examined. Thereafter, the effects on the lateral slope traversability of a small and lightweight four-wheeled rover with different grouser shapes were also examined. The traversability experiment demonstrated the vehicle mobility performance in order to contribute to the design optimization of rover systems. These experimental results and their comparisons suggested that, of the shapes studies herein, the slanted shape was the optimal grouser design for use in wheeled rovers on lunar and planetary soil.  相似文献   

11.
The antiplane shear deformation of a bi-material wedge with finite radius is studied in this paper. Depending upon the boundary condition prescribed on the circular segment of the wedge, traction or displacement, two problems are analyzed. In each problem two different cases of boundary conditions on the radial edges of the composite wedge are considered. The radial boundary data are: traction–displacement and traction–traction. The solution of governing differential equations is accomplished by means of finite Mellin transforms. The closed form solutions are obtained for displacement and stress fields in the entire domain. The geometric singularities of stress fields are observed to be dependent on material property, in general. However, in the special case of equal apex angles in the traction–traction problem, this dependency ceases to exist and the geometric singularity shows dependency only upon the apex angle. A result which is in agreement with that cited in the literature for bi-material wedges with infinite radii. In part II of the paper, Antiplane shear deformation of bi-material circular media containing an interfacial edge crack is considered. As a special case of bi-material wedges studied in part I of the paper, explicit expressions are derived for the stress intensity factor at the tip of an edge crack lying at the interface of the bi-material media. It is seen that in general, the stress intensity factor is a function of material property. However, in special cases of traction–traction problem, i.e., similar materials and also equal apex angles, the stress intensity factor becomes independent of material property and the result coincides with the results in the literature.  相似文献   

12.
The CRREL Instrumented Vehicle (CIV), shear annulus, direct shear and triaxial compression devices were used to characterize the strength of thawed and thawing soil. Strength was evaluated in terms of the Mohr-Coulomb failure parameters c′ and φ′, which can be used in simple models to predict the tractive performance of vehicles. Use of an instrumented wheel (like those of the CIV) is proposed for terrain strength characterization for traction prediction because the conditions created by a tire slipping on a soil surface are exactly duplicated. The c′ and φ′ values from a portable shear annulus overpredict traction because of the curved nature of the soil failure envelope in the region of low normal stress applied by a portable annulus. Of all the tests, the direct shear test yielded the highest φ′ value, due to its slow deformation rate and drained conditions. The triaxial test produced results closest to those of the instrumented wheel. For all methods, φ′ increases with soil moisture but decreases rapidly beyond the liquid limit of the soil. The φ′ measured with the vehicle was also found to be strongly influenced by the freeze-thaw layering of the soil.  相似文献   

13.
Single rigid body models are often used for fast simulation of tracked vehicle dynamics on soft soils. Modeling of soil-track interaction forces is the key modeling aspect here. Accuracy of the soil-track interaction model depends on calculation of soil deformation in track contact patch and modeling of soil resistive response to this deformation. An algorithmic method to calculate soft soil deformation at points in track contact patch, during spatial motion simulation using single body models of tracked vehicles, is discussed here. Improved calculations of shear displacement distribution in the track contact patch compared to existing methods, and realistically modeling plastically deformable nature of soil in the sinkage direction in single body modeling of tracked vehicle, are the novel contributions of this paper. Results of spatial motion simulation from a single body model using the proposed method and from a higher degree of freedom multibody model are compared for motion over flat and uneven terrains. Single body modeling of tracked vehicle using the proposed method affords quicker results with sufficient accuracy when compared to those obtained from the multibody model.  相似文献   

14.
结合接触面在细观尺度上的非均匀性及其损伤演化规律,提出了一种可以考虑接触面损伤演化过程的数值模型.数值模拟得到的剪切应力-剪切位移关系表明:随着剪切位移的增加,接触面上产生的损伤单元导致曲线斜率逐渐降低;当接触面被完全剪断后,模型中的剪切应力出现了一定程度的下降,此后的剪应力在摩擦力的作用下基本保持不变.模型所能承受的...  相似文献   

15.
Modeling and simulation of vehicles in sand is critical for characterizing off-road mobility in arid and coastal regions. This paper presents improved algorithms for calculating sinkage (z) of wheeled vehicles operating on loose dry sand. The algorithms are developed based on 2737 tests conducted on sand with 23 different wheel configurations. The test results were collected from Database Records for Off-road Vehicle Environments (DROVE), a recently developed database of tests conducted with wheeled vehicles operating in loose dry sand. The study considers tire diameters from 36 to 124 cm with wheel loads of 0.19–36.12 kN. The proposed algorithms present a simple form of sinkage relationships, which only require the ratio of the wheel ground contact pressure and soil strength represented by cone index. The proposed models are compared against existing closed form solutions defined in the Vehicle Terrain Interface (VTI) model. Comparisons suggest that incorporating the proposed models into the VTI model can provide comparable predictive accuracy with simpler algorithms. In addition to simplicity, it is believed that the relationship between cone index (representing soil shear strength) and the contact pressure (representing the applied pressure to tire-soil interface) can better capture the physics of the problem being evaluated.  相似文献   

16.
In this paper, a 2-D elastic-plastic BEM formulation predicting the reduced mode IIand the enhanced mode I stress intensity factors are presented. The dilatant boundary conditions (DBC) are assumed to be idealized uniform sawtooth crack surfaces and an effective Coulombsliding law. Three types of crack face boundary conditions, i.e. (1) BEM sawtooth model-elasticcenter crack tip; (2) BEM sawtooth model-plastic center crack tip; and (3) BEM sawtoothmodel-edge crack with asperity wear are presented. The model is developed to attempt todescribe experimentally observed non-monotonic, non-linear dependence of shear crack behavioron applied shear stress, superimposed tensile stress, and crack length. The asperity sliding isgoverned by Coulombs law of friction applied on the inclined asperity surface which hascoefficient of friction μ. The traction and displacement Greens functions which derive fromNaviers equations are obtained as well as the governing boundary integral equations for an infiniteelastic medium. Accuracy test is performed by comparison stress intensity factors of the BEMmodel with analytical solutions of the elastic center crack tip. The numerical results show thepotential application of the BEM model to investigate the effect of mixed mode loading problemswith various boundary conditions and physical interactions.  相似文献   

17.
Planetary rovers are typically developed for high-risk missions. Locomotion requires traction to provide forward thrust on the ground. In soft soils, traction is limited by the mechanical properties of the soil, therefore lack of traction and wheel slippage cause difficulties during the operation of the rover. A possible solution to increase the traction force is to increase the size of the wheel-ground contact area. Flexible wheels provide this due to the deformation of the loaded wheel and hence this decreases the ground pressure on the soil surface. This study focuses on development of an analytical model which is an extension to the Bekker theory to predict the tractive performance for a metal flexible wheel by using the geometric model of the wheel in deformation. We demonstrate that the new analytical model closely matches experimental results. Hence this model can be used in the design of robust and optimal traction control algorithms for planetary rovers and for the design and the optimisation of flexible wheels.  相似文献   

18.
Prediction of wheel performance by analysis of normal stress distribution under the wheel-soil interface was reported by one of our research members. In this study analysis of both normal and tangential stress distributions are included for the prediction of wheel performance. A visco-elastic soil model based on a three-element Maxwell model is used to evaluate normal stress distribution under a wheel running on soft ground. The values of the parameters characterizing the visco-elastic behavior of the soil can be derived from plate penetration tests. A rigid wheel-soil interface model is used to evaluate the tangential stress distribution under the wheel-soil interface. Shear deformation modulus, cohesion and angle of internal shearing resistance of the soil are derived from shear-displacement tests. Test results indicate that both maximum normal and shear stress occur in front of the wheel axle, and the location of peak normal stress shifts backwards towards the wheel axle while that of tangential stress shifts forwards when slippage is increased from a low value. Increasing slippage also causes a decrease in normal stress and an increase in tangential stress. Coefficients of traction and tractive efficiency are low at low slippage, increase with an increase in slippage, and level off at higher slippage.  相似文献   

19.
回转支承构件牵引滚动接触应力解析   总被引:1,自引:0,他引:1  
回转支承构件是重型机械的重要基础元件,其失效往往导致灾难性的设备事故和人身事故以及巨大的经济损失.及时、充分地了解回转支承构件牵引滚动接触应力分布特点,对于保证整机安全生产和提高企业经济效益具有非常重要的意义.本文将回转支承构件接触模型简化为轴线平行的圆柱体二维平面应变模型,从接触力学理论中McEwen关于轴线平行的圆柱体二维法向接触理论出发,重点讨论牵引滚动与常规法向接触状态的切向分布力的相同点和不同点,从而推导出牵引滚动接触状态下接触区应力场各应力分量解析式,将McEw-en法向理论公式推广到法、切向复合分布力综合作用下.在此基础上,探讨了表面拉应力与摩擦系数的关系,摩擦系数越大则表面拉应力水平越高.最后,运用材料力学二向应力状态受力分析方法,计算了接触应力场最大剪应力位置、大小和方向角与深度的关系,发现与无表面摩擦情况相比,最大主剪应力发生位置变浅,幅值反而变小.  相似文献   

20.
Field experiments on off-road vehicle traction and wheel–soil interactions were carried out on sandy and loess soil surfaces. A 14 T, 6 × 6 military truck was used as a test vehicle, equipped with 14.00-20 10 PR tyres, nominally inflated to 390 kPa. Tests were performed at nominal and reduced (down to 200 kPa) inflation pressures and at three vehicle loading levels: empty weight, loaded with 3.6 and 6.0 T mass (8000, 11,600 and 14,000 kg, respectively). Traction was measured with a load cell, attached to the rear of the test vehicle as well as to another, braking vehicle. Soil stress state was determined with the use of an SST (stress state transducer), which consists of six pressure sensors. Soil surface deformation was measured in vertical and horizontal directions, with a videogrammetric system. Effects of reduced inflation pressure as well as wheel loading on traction and wheel–soil interactions were analyzed. It was noticed that reduced inflation pressure had positive effects on traction and increased stress under wheels. Increasing wheel load resulted in increasing drawbar pull. These effects and trends are different for the two soil surfaces investigated. The soil surface deformed in two directions: vertical and longitudinal. Vertical deformations were affected by loading, while longitudinal were affected by inflation pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号