首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dielectric polymers with high thermal conductivity are very promising in the fields of aerospace and electronic device packaging. However, composites with excellent dielectric properties usually have low thermal conductivity. It is usually to fill the polymer with thermal conductivity particles to improve the thermal conductivity, but the high content of filler often reduces the mechanical properties of the polymer. In this paper, the traditional insulating polymer epoxy resin was used as the matrix, by covering the surface of silicon carbide with graphene to form a core-shell structure and co-filled with nano diamonds to achieve the preparation of high-performance epoxy resin at low content. The results showed that at the filling content of 30 wt%, the thermal conductivity of epoxy nanocomposites showed a dramatic thermal conductivity enhancement of 1263%, the energy storage modulus increased by 1.1 GPa, and the dielectric loss remained unchanged at 50 Hz. The advantages of the composite are the structural design and surface modification of the filler, which not only take advantage of its inherent advantages, but also improve the interface area with the epoxy matrix. The composite materials with excellent properties are expected to provide theoretical guidance for the application of high thermal conductivity dielectric materials.  相似文献   

2.
采用柔和混合方法制备出炭黑(CB)填充等规聚丙烯(iPP)复合材料,CB在iPP熔体中可以进行团聚而形成填料网络,采用动态流变-电阻同步测试的方法,研究原位结晶-熔融过程对所形成网络的影响.实验结果表明,经历原位结晶-熔融后复合材料中可以被动态流变实验检测到的填料网络消失,这是由于结晶和熔融过程中都会影响填料网络结构,而熔融过程中网络的破坏更为显著.相变后网络的重建过程说明,相变过程不能完全破坏熔体中形成的团聚结构,填料网络容易重新形成.  相似文献   

3.
The effects of the oriented fiber filler particles on the microscopic properties of the matrix network chains were investigated by using nanofiber filler particles as reinforcing material. Monte Carlo Rotational Isomeric State simulations were carried out for filled poly(ethylene) (PE) networks to study the dependence of the conformational distribution functions of polymer chains and their elastomeric properties on filler loadings. We were especially interested how the excluded volume effect of the nanofiber particles and their orientation (specifically orientational anisotropy) in the matrix influence elastomeric properties of the network. Distribution functions of the end-to-end distances of polymer chains for both unfilled and filled networks were calculated. Effects of nanofiber reinforcements with varying fiber radii and fiber volume fractions were investigated. We have found that the presence of nanofibers significantly increase the non-Gaussian behavior of polymer chains in the composite. The anisotropic effects of the nanofibers on mechanical properties of polymeric composites were studied as a function of their relative orientation to the direction of deformation. The modulus (reduced nominal stress per unit strain) was calculated from the distribution of end-to-end distances of polymer chains using the Mark–Curro method. Relatively small amount of nanofibers was found to increase the normalized moduli of the composite. Our results are quite in satisfactory qualitative agreement with experimental data reported in the literature. This shows that computer simulations provide a powerful tool in predicting physical properties of composite materials.  相似文献   

4.
The development of high-performance materials made from available and cheap natural resources is increasing worldwide. A new solution – composites of natural rubber, containing barley, corn and wheat straw as biofillers, was reported and researched. The latest developments and trend's exams of the elastomers filled with cereal straw represent a scientific and technological innovation. The use of straw as a filler for elastomer composites bradens the range of functional properties and reduces the costs of production. The biocomposites are more ecofriendly and give the opportunity to increase the possibility of straw management which is a problematic agricultural waste. The rubber mixtures containing lignocellulosic materials demonstrate a favorable characteristic kinetics of crosslinking. The addition of filler, in an appropriate amount, modified natural rubber vulcanizates, improving mechanical and barrier properties of composites and the ability to damp under the influence of compression stress. Dynamic mechanical analysis showed change in the G′ values of the vulcanizates upon addition of straw. That indicates the presence of strongly developed network of fillers into polymer matrix which ensure of reinforcing character. The negative impact of natural fillers on resistance to thermo-oxidative aging was not observed.  相似文献   

5.
硅氧烷基聚合物电解质*   总被引:1,自引:0,他引:1  
聚合物锂离子电池的核心技术是研制高离子传导率、适宜机械性能以及化学和电化学性能稳定的聚合物电解质材料。在众多寻求高性能聚合物电解质的研究工作中,由于硅氧烷基聚合物电解质具有灵活多样的分子结构设计、易于合成实施、优异的电化学性能和室温电导率等特点,一直是人们关注的热点领域。本文综述了近年来新型硅氧烷基聚合物电解质的设计与合成的研究工作,重点介绍了采用聚硅氧烷嵌段、接枝聚合物通过共混、互穿网络结构、交联网络结构以及无机-有机复合等方法开展的相关聚合物电解质的研究工作。同时也介绍了聚硅氧烷电解质的研究方法和基于聚硅氧烷电解质的应用研究进展。  相似文献   

6.
固态聚合物电解质被认为是解决传统液态锂金属电池安全隐患和循环性能的关键材料,但仍然存在离子电导率低,界面兼容性差等问题。近年来,基于无机填料与聚合物电解质的高锂离子电导的有机-无机复合电解质备受关注。根据渗流理论,有机-无机界面被认为是复合电解质离子电导率改善的主要原因。因此,设计与优化有机-无机渗流界面对提高复合电解质离子电导率具有重要意义。本文从渗流结构的设计出发,综述了不同维度结构的无机填料用于高锂离子电导的有机-无机复合电解质的研究进展,并对比分析了不同渗流结构的优缺点。基于上述评述,展望了有机-无机复合电解质的未来发展趋势和方向。  相似文献   

7.
The electrical conductivity and impact strength of polypropylene(PP)/EPDM/carbon black ternary composites were investigated in this paper. Two processing methods were employed to prepare these ternary composites. One was called one‐step processing method, in which the elastomer and the filler directly melt blended with PP matrix. Another one was called two‐step processing method, in which the elastomer and the filler were mixed first, and then melt blended with pure PP. To get an optimal phase morphology that favors the electrical conductivity and impact strength, controlling the distribution of CB in PP/EPDM blend was a crucial factor. Thus the interfacial tension and the work of adhesion were first calculated based on the measurement of contact angle, and the results showed that CB tended to be accumulated around EPDM phases to form filler‐network structure. Expectably, the filler‐network structure was observed in PP/EPDM/CB(80/20/3) composite prepared by two‐step processing method. The formation of this filler‐network structure decreased the percolation threshold of CB particles in polymer matrix, and the electrical conductivity as well as Izod impact strength of the composite increased dramatically. This work provided a new way to prepare polymer composites with both improved conductivity and impact strength. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The typical nano-carbon materials, 1D fiber-like carbon nanotubes (CNTs) and 2D platelet-like graphene nanosheets (GRNs), that have attracted tremendous attention in the field of polymer nanocomposites due to their unprecedented properties, are used as conducting filler to induce a considerable improvement in the mechanical, thermal and electrical properties of the resulting graphene/polymer nanocomposites at very low loading contents. This study deals with the preparation and electro-stimulus response properties of polyurethane (PU) dielectric elastomer films with such 1D and 2D nanocarbon fillers embedded in the polymer matrix. The various forms of carbon used in composite preparation include CNT, GRN and CNT-GRN hybrid fillers. Results indicate that the dielectric, mechanical and electromechanical properties depend on the carbon filler type and the carbon filler weight fraction. Here, it has been also established that embedding CNT-GRN hybrid fillers into pristine polyurethane endows somewhat better dispersion of CNTs and GRNs as well as better interfacial adhesion between the carbon fillers and matrix, which results in an improvement in electric-induced strain. Therefore, the nanocomposites seem to be very attractive for microelectromechanical systems applications.  相似文献   

9.
《先进技术聚合物》2018,29(6):1568-1585
Ever since the discovery of polymer composites, its potential has been anticipated for numerous applications in various fields such as microelectronics, automobiles, and industrial applications. In this paper, we review filler reinforced polymer composites for its enormous potential in microelectronic applications. The interface and compatibility between matrix and filler have a significant role in property alteration of a polymer nanocomposites. Ceramic reinforced polymeric nanocomposites are promising candidate dielectric materials for several micro‐ and nano‐electronic devices. Because of its synergistic effect like high thermal conductivity, low thermal expansion, and dielectric constant of ceramic fillers with the polymer matrix, the resultant nanocomposites have high dielectric breakdown strength. The thermal and dielectric properties are discussed in the view of filler alignment techniques and its effect on the composites. Furthermore, the effect of various surface modified filler materials in polymer matrix, concepts of network forming using filler, and benefits of filler alignment are also discussed in this work. As a whole, this review article addresses the overall view to novice researchers on various properties such as thermal and dielectric properties of polymer matrix composites and direction for future research to be carried out.  相似文献   

10.
Dynamic mechanical spectroscopy and differential scanning calorimetry were used to study the effect of various fillers (carbon fiber, glass fiber, and aramid fiber) on the kinetic characteristics of glass transition in polymer composite materials based on epoxy resin. It is shown that the composite based on carbon fiber is the most fragile among the materials studied, whereas the polymer composite material based on aramid fiber exhibits the lowest rate of variation of the relaxation time above the glass-transition temperature. A relationship is determined between the heat conductivity and fragility of polymer composite materials. The effect of various fillers on the curing kinetics of the epoxy matrix upon glass transition is prognosticated, with the difference in the degree of curing reaching a value of 4–5%. The strongest filler effect on the curing kinetics is observed in the chemically controlled region, which may be due to the catalytic effect of functional groups on the fiber surface.  相似文献   

11.
This paper reports investigations carried out on elastomeric matrices filled with multiwall carbon nanotubes. A comparison with carbon black-filled polymers is also made. The state of dispersion of the fillers in the polymer matrix is evaluated through transmission electron and atomic force microscopies. Stress–strain measurements of the composites demonstrate that carbon nanotubes bring significant improvements in the mechanical properties with regard to the pure polymer. Infrared and Raman spectroscopies are shown to bring molecular insights into the structure/property correlations. Electrical properties of the filled materials are also analyzed in order to determine the so-called percolation threshold and the insulator–conductor transition corresponding to the formation of an interconnected filler network throughout the matrix.  相似文献   

12.
Jinkai Yuan 《中国化学快报》2017,28(11):2036-2044
This review summarized the recent progress towards high-k polymer composites bases on the near-percolated networks of carbon nanomaterials by focusing on the effects of distinct network morphologies on the dielectric properties. It is expected to give guidance on designing new near-percolated networks in polymer matrices towards next-generation polymer dielectrics.  相似文献   

13.
A green method—joint mechanical grinding and high pressure homogenization—was used to defibrillate paper pulp into nanofibrils. The prepared cellulose nanofibrils (CNF) were then blended with PVA in an aqueous system to prepare transparent composite film. The size and morphology of the nanofibrils and their composites were observed, and the structure and properties were characterized. The results showed that CNFs are beneficial to improve the crystallinity, mechanical strength, Young’s modulus, T g and thermal stability of the PVA matrix because of their high aspect ratio, crystallinity and good compatibility. Therefore, nano cellulosic fibrils were proven to be an effective reinforcing filler for the hydrophilic polymer matrix. Moreover, the green fabrication approaches will be helpful to build up biodegradable nanocomposites with wide applications in functional environmentally friendly materials.  相似文献   

14.
This study explores reactive processing aimed at improving the mechanical properties of polyolefin/inorganic particulate filler based composites. Three different polymer matrix materials have been studied in combination with the nine inorganic particulate fillers with different particle size and of varying pH. The reactive modifier 1,3‐phenylene dimaleimide (BMI) has been shown in all cases to be very effective in terms of improving composite properties beyond those of the respective unmodified composites and in some cases beyond those of the unfilled matrix materials. The detrimental effect of BMI on melt viscosity can be overcome via judicious use of a suitable lubricant, and together with response surface methods, followed by optimization procedures, composite properties can be tailored for specific end use applications.  相似文献   

15.
With the use of the methods of X-ray diffraction and electron microscopy, chitosan fibers prepared by coagulation into an alcohol-alkali mixture are shown to possess a two-phase structure containing C- and O-type crystallites. These fibers and composite fibers containing halloysite and Mg chrysotile nanotubes are characterized by anisotropic structure, i.e., by the orientation of both chitosan crystallites and Mg chrysotile particles along the fiber axis. A comparison of the rates of shear induced by passing of a polymer solution through a die and the data of rheological studies allows the conclusion that the structuring of chitosan solution under the applied field of shear stresses and the orientation of polymer macromolecules and filler nanotubes occur. An increase in the draw ratio during fiber spinning does not assist orientation of polymer crystallites but, in contrast, increases surface defectiveness and leads to the nucleation of longitudinal cracks; as a result, the strength of fibers decreases. The introduction of 5 wt % Mg chrysotile into the chitosan matrix markedly increases the mechanical characteristics of the composite fibers owing to the reinforcing action of oriented filler nanotubes.  相似文献   

16.
This article presents a study of the polymer‐filler interfacial effects on filler dispersion and mechanical reinforcement in Polystyrene (PS)/silica nanocomposites by direct comparison of two model systems: ungrafted and PS‐grafted silica dispersed in PS matrix. The structure of nanoparticles has been investigated by combining small angle neutron scattering measurements and transmission electronic microscopic images. The mechanical properties were studied over a wide range of deformation by plate–plate rheology and uni‐axial stretching. At low silica volume fraction, the particles arrange, for both systems, in small finite size nonconnected aggregates and the materials exhibit a solid‐like behavior independent of the local polymer‐fillers interactions suggesting that reinforcement is dominated by additional long range effects. At high silica volume fraction, a continuous connected network is created leading to a fast increase of reinforcement whose amplitude is then directly dependent on the strength of the local particle–particle interactions and lower with grafting likely due to deformation of grafted polymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

17.
Thermo‐mechanically durable industrial polymer nanocomposites have great demand as structural components. In this work, highly competent filler design is processed via nano‐modified of micronic SiO2/Al2O3 particulate ceramics and studied its influence on the rheology, glass transition temperature, composite microstructure, thermal conductivity, mechanical strength, micro hardness, and tribology properties. Composites were fabricated with different proportions of nano‐modified micro‐composite fillers in epoxy matrix at as much possible filler loadings. Results revealed that nano‐modified SiO2/Al2O3 micro‐composite fillers enhanced inter‐particle network and offer benefits like homogeneous microstructures and increased thermal conductivity. Epoxy composites attained thermal conductivity of 0.8 W/mK at 46% filler loading. Mechanical strength and bulk hardness were reached to higher values on the incorporation of nano‐modified fillers. Tribology study revealed an increased specific wear rate and decreased friction coefficient in such fillers. The study is significant in a way that the design of nano‐modified mixed‐matrix micro‐composite fillers are effective where a high loading is much easier, which is critical for achieving desired thermal and mechanical properties for any engineering applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Summary: In this study, chitosan nanocomposite films were prepared using a solvent-casting method by incorporation of an organically modified montmorillonite (Cloisite 10A). The effect of filler concentration on the water vapor permeability, oxygen permeability, mechanical and thermal properties of the composite films was evaluated. The structure of nanocomposites and the state of intercalation of the clay were characterized by XRD. The water vapor permeability of pure chitosan films was measured as a function of relative humidity (RH). It was found that the permeability value increased with an increase in RH. The water vapor and gas permeability values of the composite films decreased significantly with increasing filler concentration. Permeation data was fitted to various phenomenological models predicting the permeability of polymer systems filled with nanoclays as a function of clay concentration and aspect ratio of nanoplatelets. According to the XRD results, an increase in basal spacing was obtained with respect to pure clay for chitosan/clay nanocomposites. This demonstrated the formation of intercalated structure of clay in the polymer matrix. Tensile strength and elongation at break of the composites increased significantly with the addition of clay, however the thermal and color properties of the films were not much affected by the intercalation of clay into polymer matrix.  相似文献   

19.
Thermal and rheological properties of plant-based natural filler-reinforced polyethylene bio-composites applying various filler loadings as well as the impacts of the different compatibilizers were investigated by means of differential scanning calorimetry and dynamic mechanical thermal analysis (DMTA). As lignocellulosic materials, such as rice-husk flour and wood flour, are eco-friendly biomaterials and a thermoplastic polymer, for example, high-density polyethylene, has good physico-mechanical and thermal properties, therefore their bio-composites can combine and utilize these two advantages at the same time. The temperature of the α-relaxation (T α) slightly increased and melting temperatures (T m) of the matrix polymer in the case of the studied bio-composites did not shift significantly as the filler loading changed, because the rigid interphase hinders the motion of polymer segments resulting in the increase in T α and only weak interactions developed at the interface between the matrix polymer and the reinforcement in the case of non-compatibilized composites. However, compatibility between the reinforcement and the matrix polymer was enhanced by incorporating compatibilizers, which further improved stiffness. From the DMTA experiment, the reinforcements result in composite samples having higher storage modulus (E′) than the neat polymer sample, indicating that incorporating lignocellulosic filler increased their stiffness.  相似文献   

20.
It is shown that, upon the modification of filler particles by a polymer film of the same nature as the polymer matrix, intermolecular bonds become stronger in a boundary layer between a polymer and a filler and the level of mechanical characteristics of polymer composite increases correspondingly. In order to ensure the working capacity of the metal-epoxy primer-polyethylene system, along with cohesive and adhesive properties of epoxide polymers, it is also necessary to take into account acid-base properties of solid metal and polymer surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号