首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The resiliency of advanced laminated nanocomposite materials to mitigate impact load is an essential characteristic for material selection and product design. This paper investigates the effect of nanofillers and its effect on the damage resistance performance of a newly developed woven Kevlar fabric. Three types of nanofillers were investigated: (1) Silicon carbide (SiC), (2) aluminum oxide (Al2O3), and (3) multiwalled carbon nanotube (MWCNT). The nanofillers were dispersed using shear mixing and sonication into the epoxy to reinforce Kevlar fabric. Moreover, the effect of the nanofiller's concentration on the damage resistance performance was analyzed. All specimens had 10 layers of Kevlar fabric (KM2plus) stacked with a 0° angle. To evaluate the damage resistance performance a drop-weight impact test was conducted using a maximum drop height of 100 cm. X-ray diffraction was used to evaluate the level of material damage caused by the impact load. The addition of nanofillers enhanced the flexural properties of the composite and as well as its resiliency towards impact loads. In particular, the 0.5 wt% MWCNT laminated Kevlar/epoxy composite possessed the highest impact damage resistance capacity. Furthermore, the damage evolution was not observed within the impact area and in the surrounding areas for specimens with 0.5 wt% MWCNT. Therefore, the results indicate that the optimal nanofiller content for Kevlar KM2plus/epoxy nanocomposites is 0.5 wt% MWCNTs.  相似文献   

2.
Hooke numbers He ≡ σb/(E) are calculated from published ultimate tensile strengths σb, tensile moduli E, and ultimate elongations ?b. Data for common thermoplastics and natural fibers each follow a function He = [1 + (?b/?crit)ab]?1/b with a Hookean region I (He = 1) at ?b ? ?crit, a non-Hookean region III at ?b ? crit, and a transition region II for ?b ≈ ?crit. Only non-Hookean regions III were found for semisimultaneous interpenetrating networks from polyisobutylene-polymethyl methacrylate, thermoplastic elastomers from segmented polyamide-polyethers, molecular composites from poly(p-phenylene benzobisthiazole) and poly[2,5(6)-benzimidazole], and three groups of various synthetic fibers. The Hooke numbers of lyotropic and thermotropic liquid-crystalline polymers vary with the heat treatment and depend on orientation angles for orientation angles greater than ca. 10°. Hooke numbers much greater than 1 are observed for highly stressed polymers. ©1995 John Wiley & Sons, Inc.  相似文献   

3.
Mechanical properties of unidirectional (UD) and woven fabric glass/epoxy composites under off-axis tensile loading were experimentally investigated. A number of off-axis tests considering different fibre orientations were performed to study the character and failure mechanisms of the composite laminates. The experimental results indicated that both off-axis elastic moduli and strength degrade with increasing off-axis angle in all cases, and the woven fabric composites present nonlinear stress-strain behaviour under off-axial tension loading. The Tsai-Wu criteria used for failure analysis of the UD and woven fabric composites were compared and discussed, especially considering different values of interaction coefficient F12. The prediction results demonstrated that the Tsai-Wu criterion can be used successfully to analyse failure properties of the woven fabric composites under multiaxial stress conditions, where the criterion with the modified coefficient F12 obtained from the 45° off-axial tension tests is better and has higher accuracy. Finally, the specific failure modes were compared in the UD and woven fabric composites. The selected fracture surfaces were also observed by scanning electron microscopy (SEM), and the corresponding failure mechanisms of the woven fabric composites under off-axis tensile loading were identified.  相似文献   

4.
Fiber spinning and mechanical properties of four rigid polyesters with alkoxy substituents of different length and placement were evaluated. Properties of oriented fibers from the polymer with dodecyloxy substituents on the terephthalate moiety, PTA12HQ, were significantly affected by the crystal modification. At room temperature the following properties (tensile modulus E, tensile strength σb, and strain at break εb) could be obtained: E = 9.5 GPa, σb = 85 MPa and εb = 1.1% for phase Lf (the “frozen in layered mesophase”); E = 10.4 GPa, σb = 59 MPa and εb = 0.6% for modification A; E = 17.3 GPa, σb = 158 MPa and εb = 1.2% for modification B. Because of the higher amount of main chains per cross sectional area the polymer with hexyloxy side chains, PTA6HQ, showed better properties at a comparable degree of molecular orientation: E = 24 GPa, σb = 270 MPa, εb = 1.4%. Fibers obtained from the polyester with dodecyloxy substituents on the hydroquinone moiety, PTAHQ12, were too brittle to handle. The polyester with dodecyloxy substituents on both moieties, PTA12HQ12, was spun from the isotropic melt. Because of the obtained low degree of orientation, properties (E = 1 GPa, σb = 40 MPa, and εb = 6.3%) were governed by interactions between the chains (the main chains are not load-bearing). © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Modern world seeks dramatic progress in composite materials use in numerous applications. Scientists worldwide are researching on fabricating new composites and attempting to have more applications using these materials. Serious attempts have also been taken to improve the properties of these materials. In this circumstance, a conscious attempt has been made in this present work that studies the effect of SiC/TiO2/Al2O3/ graphene nanoparticles (NPs) deposition on Kevlar fiber. In this process, SiC/TiO2/Al2O3/ graphene NPs have been deposited on Kevlar fiber by dip coating process. For the analysis, physical observation has been performed well at first which confirms nanoparticle deposition on the fiber and formation of adhesive bonding. SEM analysis followed by surface topography has been conducted to observe and further analysis of nanoparticle deposition. Atomic bonding mechanism shows how chemical bonding between fiber and nanoparticles. TGA analysis shows thermal improvement of the fiber by NPs deposition where graphene with binder makes 21.6% improvement in decomposition temperature. Tensile strength and young’s modulus of binder inclusion coated kevlar fabric are improved up to 26% and 5.7%, respectively. Finally, the IR-spectra confirms successful deposition of nanoparticles on the fiber.  相似文献   

6.
In this work, we report a new strategy of introducing thorns-like fiber into composites, so that the resultant composites substantially benefit from strong fiber–matrix interface adhesion. Specifically, the “thorns” could increase in interlocking molecules chains and entangle with the surrounding matrix resin, which could impede the mobility of polymer chains, as like the roots with uplift capacity. Strong interfacial adhesion between fibers and matrices is suggested by the SEM images and the DMA studies. After the thorns-like fibers are embedded into epoxy resin, the glass transition temperature (Tg) and the storage modulus (E′) are higher than these of neat epoxy and untreated fibers-reinforced epoxy, respectively, and the flexural properties of the composites reinforced with thorns-like fibers are significantly increased. Therefore these novel three dimensional thorns-like fibers will be applicable for composite materials based upon its unique architecture, making it an attractive alternative to increase the performance of any matrix resin.  相似文献   

7.
A tin(II) squarate Sn2O(C4O4)(H2O) was synthesized by hydrothermal technique. It crystallizes in the monoclinic system, space group C2/m (no. 12) with lattice parameters a=12.7380(9) Å, b=7.9000(3) Å, c=8.3490(5) Å, β=121.975(3)°, V=712.69(7) Å3, Z=4. The crystal structure determined with an R=0.042 factor, consists of [(Sn4O10)(H2O)2] units connected from one another in the [101] and [010] directions via squarate groups to form layers separated by Sn(II) lone pairs. This compound presents the same remarkable structural arrangement as observed in the tin-oxo-fluoride Sn2[Sn2O2F4] inorganic compound with Sn(II) lone pairs E(1) and E(2) concentrated in large rectangular-shape tunnels running along [001] direction.  相似文献   

8.
The influence of the structure of succinic or glutaric anhydride modified linear unsaturated (epoxy) polyesters on the course of the cure reaction with styrene initiated by benzoyl peroxide (BPO) or the mixture of benzoyl peroxide/tetrahydrophthalic anhydride (BPO/THPA) or benzoyl peroxide/maleic anhydride, as well as viscoelastic properties and thermal behavior of their styrene copolymers have been studied by DSC, DMA, and TGA analyses. Additionally, mechanical properties: flexural properties using three-point bending test and Brinell’s hardness for studied copolymers were evaluated. It was confirmed that the structure of used polyesters had a considerable influence on the course of the cure reaction with styrene, viscoelastic, thermal, and mechanical properties of prepared styrene copolymers. Generally, one or two asymmetrical peaks for the cure reaction of succinic or glutaric anhydride modified linear unsaturated epoxy polyesters with styrene were observed. They were connected with various cure reaction, e.g., copolymerization of carbon–carbon double bonds of polyester with styrene, thermal curing of epoxy groups, polyaddition reaction of epoxy to anhydride groups in dependence of used curing system. In addition, only one asymmetrical, exothermic peak attributed to the copolymerization process of succinic or glutaric anhydride modified linear unsaturated polyesters with styrene was visible. Moreover, the obtained styrene copolymers based on succinic or glutaric anhydride modified linear unsaturated epoxy polyesters were characterized by higher values of E20 °\textC E_{{20\,^{\circ}{\text{C}}}}^{\prime} , T g, E″, ν e, E mod, F max, hardness, IDT, FDT but lower ε − F max compared to those values observed for styrene copolymers prepared in the presence of succinic or glutaric anhydride modified linear unsaturated polyesters. This supported to the production of stiffer and more thermally stable polymeric structure of copolymers based on unsaturated epoxy polyesters. Moreover, the copolymers prepared in the use of glutaric anhydride modified linear unsaturated (epoxy) polyesters were described by lower values of E20 °\textC E_{{20\,^{\circ}{\text{C}}}}^{\prime} , T g, E″, ν e, E mod, F max, hardness, IDT, FDT but higher ε − F max than those based on succinic anhydride modified linear unsaturated (epoxy) polyesters. The presence of longer aliphatic chain length in polyester’s structure leads to produce more flexible network structure of styrene copolymers based on glutaric anhydride modified linear unsaturated (epoxy) polyesters than those based on succinic anhydride modified linear unsaturated (epoxy) polyesters.  相似文献   

9.
The two symmetry‐independent mol­ecules of the title compound, cevane‐3β,6α,20‐triol ethanol hydrate (2/1/1), 2C27H45NO3·C2H6O·H2O, have the same stereochemical assignments. The six‐membered rings A, B, E and F are in the chair conformation, while ring D is in a boat conformation. The ring fusions are A/Btrans, B/Ctrans, C/Dcis, D/Etrans and E/Ftrans. The verticine mol­ecules are bridged by water and ethanol mol­ecules via hydrogen bonds to form two‐dimensional layers, and the crystal structure is built up by stacking of these layers.  相似文献   

10.
Br-atom atomic resonance absorption spectrometry (ARAS) has been developed and applied to measure thermal decomposition rate constants for CF3Br (+ Kr)→CF3+Br (+ Kr) over the temperature range, 1222–1624 K. The Br-atom curve-of-growth (145<λ<163 nm) was determined using this reaction. For [Br]≤1×1012 molecules cm−3, absorbance, (ABS)=1.410×10−13 [Br], yielding σ=1.419×10−14 cm2. The curve-of-growth was then used to convert (ABS) to Br-atom profiles which were then analyzed to give measured rate constants. These can be expressed in second-order by k1=8.147×10−9 exp(−24488 K/T) cm3 molecule−1 s−1 (±33%, 1222≤T≤1624 K). A unimolecular theoretical approach was used to rationalize the data. Theory indicates that the dissociation rates are closer to second- than to first-order, i.e., the magnitudes are 30–53% of the low-pressure-limit rate constants over 1222–1624 K and 123–757 torr. With the known, E0=ΔH00=70.1 kcal mole−1, the optimized theoretical fit to the ARAS data requires 〈ΔEdown=550 cm−1. These conclusions are consistent with recently published data and theory from Kiefer and Sathyanarayana. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 859–867, 1998  相似文献   

11.
Pseudo-first-order rate constants, kobs, for the alkaline hydrolysis of N-hydroxyphthalimide, 1, at 0.02 M NaOH and 30°C remain essentially independent of the total concentration of C12E23, [C12E23]T, at ≤0.005 M C12E23. The increase in [C12 E23]T from 0.005 to 0.015 M causes a nonlinear decrease in kobs. The rate of hydrolysis becomes either too slow or the change in absorbance values becomes significantly small to allow a reliable observed data fit to a first-order kinetic equation at ≥0.020 M C12E23 in the absence and presence of total concentration of cetyltrimethylammonium bromide, [CTABr]T ranging from 0.003 to 0.020 M. The values of fraction of nonionized 1, FSH, obtained at reaction time t = 0 and 0.02 M NaOH, remain ~0 at ≤0.010 M C12E23 while they increase from 0.39 to 0.89 with the increase of [C12E23]T from 0.015 to 0.10 M. The values of kobs show a nonlinear decrease of ~5-fold with the increase of [C12E23]T from 0.0 to 0.010 M in the presence of 0.02 M NaOH and [CTABr]T range of 0.003 to 0.020 M. The values of FSH remain ≤~0.10 at ≤0.015 M C12E23 while they vary between 0.40 and 0.90 within a [C12E23]T range 0.02 to 0.05 M in the presence of 0.02 M NaOH and [CTABr]T ranging from 0.003 to 0.020 M. The values of FSH represent the fraction of nonionized 1 trapped almost irreversibly by pure C12E23, and mixed C12E23–CTABr micelles.  相似文献   

12.
Starting from the 20-mer peptide 289–308, one of the experimentally characterized B-cell epitopes of the La/SSB autoantigen, the complementary peptide cpl(289–308), encoded by the complementary RNA was designed. The conformational properties of the cpl(289–308) were investigated in DMSO solution with the combined use of NMR data (vicinal coupling constants, NOE effects and temperature coefficient values), molecular modelling calculations of energy minimization and molecular dynamics. MD calculations led to a folded structure in which a βI-turn, stabilized by the H8 amide proton to the F5 carbonyl hydrogen bond, was found for the F5P6S7H8 sequence, whereas two γ-turns, centred around the E15 and I18 residues respectively, were found in the C-terminal part of the peptide. In the whole crown folded structure of the peptide, the Y4, F5, H8, F9 and F10 aromatic side chains are situated on one side with the E13, E15, T17 and C20 side chains on the other. This 3D structure resembles and could mimic the binding site of an antibody.  相似文献   

13.
The new compound Cu3(TeO3)2Br2 crystallizes in the monoclinic spacegroup C2/m. The unit cell parameters are a=9.3186(18)Å, b=6.2781(9)Å, c=8.1999(16)Å, β=107.39(2)°, Z=2. The structure is solved from single crystal data, R1=0.021. The new compound shows a layered structure where only weak van der Waals interactions connect the layers. There are two crystallographically different Cu(II) atoms; one having a square planar [CuO4] coordination and one showing an unusual [CuO4Br] trigonal bi-pyramidal coordination, the Br-ion is located in the equatorial plane. The Te(IV) atom has a tetrahedral [TeO3E] coordination where E is the 5s2 lone-pair. Within the layers the Cu-polyhedra are connected by corner- and edge sharing to form chains. The chains are separated by the Te atoms. The magnetic properties are dominated by long range magnetic ordering at . Evidence for a coexistence of ferromagnetic and antiferromagnetic interactions exists.  相似文献   

14.
Adsorption phenomena at the mercury electrode/cucurbit[7]uryl aqueous solutions are studied by the measuring of the electrode differential capacitance C as a function of potential E. The data obtained showed that the adsorption potential region is abnormally wide (>2 V). Two segments are observed in the C,E-dependences, which relate to adsorption layers with different structure. The complicated adsorption layers forming in the studied systems can be explained by the structure of the cucurbit[7]uryl cavitand whose complexes with inorganic cations are formed by the cation binding by oxygen-containing groups of external portals, rather than their inclusion into the cavitand’s inner cavity as in the case of cryptate formation. Adsorption parameters for adsorbate layers formed in the cucurbit[7]uryl + Na2SO4 solution are calculated. The data obtained evidence a rather strong potential dependence of the properties of the adsorption layers formed at the electrode/solution interface in the studied system.  相似文献   

15.
Experimental studies are presented on stress wave attenuation during ballistic impact for four types of polymer matrix composites. The materials considered are plain weave E-glass/epoxy, 8H satin weave T300 carbon/epoxy and two types of hybrid composite made using plain weave E-glass fabric and 8H satin weave T300 carbon fabric with epoxy resin. Strain profiles were obtained during ballistic impact event at certain distances from the point of impact. There is stress wave attenuation leading to reduction in peak strains obtained as the stress wave propagates away from the point of impact. Further, it is observed that ballistic limit velocity, V50, can be increased compared to carbon only composites by adding E-glass layers to T300 carbon layers.  相似文献   

16.
Graphene oxide (GO) was functionalized using three different diamines, namely ethylenediamine (EDA), 4,4′-diaminodiphenyl sulfone (DDS) and p-phenylenediamine (PPD) to reinforce an epoxy adhesive, with the aim of improving the bonding strength of carbon fiber/epoxy composite. The chemical structure of the functionalized GO (FGO) nanosheets was characterized by elemental analysis, FT-IR and XRD. Hand lay-up, as a simple method, was applied for 3-ply composite fabrication. In the sample preparation, the fiber-to-resin ratio of 40:60 (w:w) and fiber orientations of 0°, 90°, and 0° were used. The GO and FGO nanoparticles were first dispersed in the epoxy resin, and then the GO and FGO reinforced epoxy (GO- or FGO-epoxy) were directly introduced into the carbon fiber layers to improve the mechanical properties. The GO and FGO contents varied in the range of 0.1–0.5 wt%. Results showed that the mechanical properties, in terms of tensile and flexural properties, were mainly dependent on the type of GO functionalization followed by the percentage of modified GO. As a result, both the tensile and flexural strengths are effectively enhanced by the FGOs addition. The tensile and flexural moduli are also increased by the FGO filling in the epoxy resin due to the excellent elastic modulus of FGO. The optimal FGO content for effectively improving the overall composite mechanical performance was found to be 0.3 wt%. Scanning electron microscopy (SEM) revealed that the failure mechanism of carbon fibers pulled out from the epoxy matrix contributed to the enhancement of the mechanical performance of the epoxy. These results show that diamine FGOs can strengthen the interfacial bonding between the carbon fibers and the epoxy adhesive.  相似文献   

17.
The first AlkNSNHetF sulfur diimide 6 (Alk=adamant-1-yl, HetF=2,3,5,6-tetrafluoropyrid-4-yl) was prepared by trapping of the corresponding alkylthiazylamide [AlkNSN]3 with pentafluoropyridine, followed by X-ray structural characterization. For 6, the Z,E configuration was found. From the reaction of 3 with octafluoronaphthalene, hexafluorinated naphthothiadiazole 7 was isolated along with the parent AlkNH2.  相似文献   

18.
The thermal degradation behaviors of Kevlar 49, Kevlar 129 (Poly(p-phenylene terephthamide), Nomex (polyisophthaloyl metaphenylene diamine), and PBO(poly(p-phenylene benzobisoxazole)) fibers were measured by TG/FTIR and Py-GC/MS. The characteristic temperatures of the fibers in air were obtained by TG. It indicated that the initial degradation temperature of the PBO is the highest. The initial degradation temperature of Nomex fiber is the lowest, but the end decomposition temperature of Nomex is the highest. The gases released by the pyrolysis in air were mainly CO2, CO, H2O, NO, and HCN, also containing a small amount of NH3, and the absorption peaks of CO2 were the strongest. The results of Py-GC/MS showed that CO2 and benzene were the most pyrolysis fragment. With the change of pyrolysis temperature, the chromatogram and mass spectra results take a large variety. The pyrolysates can help us to study the pyrolysis process of high performance fibers.  相似文献   

19.
We describe the reactivity of two linkage isomers of a boryl-phosphaethynolate, [B]OCP and [B]PCO (where [B]=N,N’-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaboryl), towards tris- (pentafluorophenyl)borane (BCF). These reactions afforded three constitutional isomers all of which contain a phosphaalkene core. [B]OCP reacts with BCF through a 1,2 carboboration reaction to afford a novel phosphaalkene, E-[B]O{(C6F5)2B}C=P(C6F5), which subsequently undergoes a rearrangement process involving migration of both the boryloxy and pentafluorophenyl substituents to afford Z-{(C6F5)2B}(C6F5)C=PO[B]. By contrast, [B]PCO undergoes a 1,3-carboboration process accompanied by migration of the N,N’-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaboryl to the carbon centre.  相似文献   

20.
The molecules ArFXeF (ArF=C6F5, 2,4,6-C6H2F3) with a more polar Xe-F bond than XeF2 are versatile starting materials for substitution reactions. Fluorine-aryl substitutions with Cd(ArF)2, C6F5SiMe3/[F], and C6F5SiF3 formed symmetric and/or asymmetric diarylxenon compounds. Applying C6F5BF2, with a higher F-affinity than the corresponding aryltrifluorosilane, in contrast gave the salt [RXe] [ArFBF3]. Using the alkenyl and alkyl compounds CF2=CFSiMe3/[F], CF3SiMe3/[F], and Cd(CF3)2 in reactions with C6F5XeF, the perfluoroalkenyl or -alkyl transfer reagents were consumed without observing C6F5XeCF=CF2 or C6F5XeCF3 but the formation of Xe(C6F5)2 (dismutation product) and in the latter case C6F5CF3 (coupling product), gave hints of the desired intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号