首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viscoelastic characteristics of cured phenolic resin–carbon fiber composite materials were investigated through glass transition and degradation reaction processes in the high‐temperature region up to 400°C. A typical glass transition of the crosslinked thermoset polymer was followed by irreversible degradation reactions, which were exhibited by the increasing storage modulus and loss modulus peak. A degradation master curve was constructed by using the vertical and horizontal shift factors, both of which complied well with the Arrhenius equation in light of the kinetic expression of degradation rate constants. Using an analogy to the Havriliak–Negami equation in dielectric relaxation phenomena, a viscoelastic modeling methodology was developed to characterize the frequency‐ and temperature‐dependent complex moduli of the degrading thermoset polymer composite systems. The temperature‐dependent relaxation time of the degrading composites was determined in a continuous fashion and showed a minimum relaxation time between the glass transition and degradation reaction regions. The capability of the developed modeling methodology was demonstrated by describing the complex behavior of the viscoelastic complex moduli of reacting phenolic resin composite systems. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 907–918, 1999  相似文献   

2.
Dielectric properties of vinyl acetate and methyl methacrylate oligomers having chemically different end groups were compared. Dielectric measurements were carried out over the frequency range between 23 and 3 MHz and the temperature range between +50 and ?50°C. The static dielectric constants of these oligomers are between 10 and 20. The relaxations were analyzed with the Havriliak–Negami equation. The dielectric properties depend on the chain end groups on the oligomers. The distribution of relaxation times of the vinyl acetate oligomers was wider than that of poly(vinyl acetate). It was concluded that two cooperative motions, that of the principal chain and that of the chain and that of the chain end group, take part in the dielectric relaxation of these short chain molecules.  相似文献   

3.
The assumption of Clark and Zimm that coupled dashpots and springs can be used to model the dynamics of polymer molecules is here applied to a model different from that of Clark and Zimm. The precise differences are given in the preceding paper. The dielectric relaxation spectrum of the model is computed in time and frequency domains. The relaxation spectrum can be fitted reasonably well by the empirical Williams–Watts and Havriliak–Negami functions. The best-fit Williams–Watts and Havriliak–Negami parameters are given as functions of the parameters of the model. The model is compared with several related models found in the literature and possible interpretations are given.  相似文献   

4.
The dielectric relaxation data of poly (n-hexyl methacrylate) and poly (n-octyl methacrylate) by Strella and Chinai are represented in terms of the relaxation function proposed by Havriliak and Negami using the multiresponse techniques developed by Havriliak and Watts to evaluate the parameters and their dependence on temperature. The parameter α which represents the width of the distribution of relaxation times was found to be dependent on temperature whereas the parameter β representing the skewness of the distribution function was found to be independent of temperature. The relaxation process parameters are discussed in terms of Mansfield's jump model.  相似文献   

5.
Electrorheological (ER) behavior of silicone oil suspensions of particles of polyaniline protonated to various doping levels with ortho-phosphoric and tetrafluoroboric acids has been studied. The dynamic yield stress obtained by extrapolation of shear stress to zero shear rate using Herschel–Bulkley equation was used as a criterion of the ER efficiency. At a same molar concentration of doping acids, various protonation effects appeared and the dependences of the yield stress on the acid concentration differed. The comparison of the yield stresses with dielectric characteristics calculated from the Havriliak–Negami equation revealed that the particle conductivity, in contrast to particle permittivity, dominates the polarization process especially at higher protonation degrees. Consequently, particle conductivity or dielectric relaxation time proved to be the parameters providing the common dependences of the yield stress regardless of the way of polarization.  相似文献   

6.
The dielectric relaxation data of Ishida et al. on a number of acrylic polymers are represented in terms of the relaxation function proposed by Havriliak and Negami using the multi-response techniques developed by Havriliak and Watts. Two of the parameters of this function are interpreted in terms of a temperature dependent distribution of relaxation times. In this method of interpretation the breadth of the distribution function is temperature-dependent while the skewness is not. The temperature dependence of the breadth of the distribution function is similar for most of these acrylic polymers.The parameters of the relaxation function are also interpreted in terms of Mansfield's model which represents intra- and inter-molecular interactions in terms of springs and dash pots. Briefly, increasing the side chain length for the methacrylate series increases the inter-molecular relaxation time which may be due to an increase in the entropy of activation for the orientation process. The difference between the one acrylate in this study and the four methacrylates of the series is a reduction in the intra-molecular relaxation time, apparently due to the lack of the alpha methyl group.  相似文献   

7.
The dielectric relaxation study that is static dielectric permittivity (∈0) and relaxation time (τ) of amide of N-methyl formamide (NMF) with increasing volume percent propylene glycol (PLG) and BLG has been carried out at different temperatures. The time domain reflectometry (TDR) technique has been used to measure reflection coefficient in frequency range of 10 MHz to 20 GHz. The dielectric parameters have been obtained by fitting experimental data with the Havriliak–Negami equation. The experimental observation shows that the static dielectric permittivity and relaxation time decreases with increasing temperature. The experimental observation also shows that the static dielectric permittivity decreases and relaxation time increases with increasing percentage volume of Propylene glycol (PLG) and Butylene glycol (BLG) in NMF. The nature of (?0) and (τ) is same for the temperature ranges (20, 30, and 40°C). The thermodynamic parameters enthalpy (ΔH) and entropy (ΔS) of the binary mixture are also reported in this work.  相似文献   

8.
The evolution of the α‐relaxation during an isothermal crystallization process of a series of flexible copolyesters of hydroxybutyrate (HB) and hydroxyvalerate (HV) has been followed in real‐time by wide‐angle X‐ray scattering and dielectric complex permittivity measurements. The change of the dielectric parameters with crystallization time can be phenomenologically described in terms of the Havriliak‐Negami equation. The dielectric strength follows a sigmoidal‐shaped pattern similar to that shown by the crystallinity. A reduction of the overall mobility with crystallization time of the polymeric chains in the amorphous phase has been observed. This slowing down effect depends on the HV molar content. The influence of the chain flexibility on the crystalline‐induced restriction has been discussed in the light of similar studies carried out with more rigid polymers. Dielectric experiments suggest that the progressive immobilization of polymer segments as crystallization proceeds cannot be exclusively associated with the amount of crystalline material. Differences in microstructure, depending on the HV molar content, seem to be responsible for the observed behavior. The progressive broadening and symmetrization of the α‐relaxation with increasing crystallization time has been explained as due to a restriction of the large‐scale motions of the polymeric chains, as the material is being filled in with crystals. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 37–49, 1999  相似文献   

9.
10.
结合DLVO理论和壳聚糖微球的特点, 提出了适合实验数据的电动力学模型, 并分析了浓厚分散系的界面极化弛豫的微观机制. 进而测量了不同粒径壳聚糖微球悬浊液的介电谱, 发现在10~100 MHz频率范围内均出现明显的介电弛豫现象. 利用上述模型合理解释了该弛豫现象以及微球粒径对界面极化弛豫的影响, 结果也证明了我们提出的模型的适当性. 此外, 利用Hanai方法, 通过介电参数准确计算出了各悬浊液的内部信息, 并且分析了这些实时信息的合理性. 研究结果从实验和理论两方面展示了介电谱方法在即时获取壳聚糖内部信息上的独到优势.  相似文献   

11.
An ultrasonic shear wave reflection method was applied to study film formation and temperature dependence of the complex shear modulus (G*G′ + iG″) in different amorphous films made of aqueous dispersions of acrylic-type copolymers. The data are compared with dynamic-mechanical measurements in the low frequency range. It is shown that the temperature dependence of the storage (G′) and the loss modulus (G″) for both methods can be fitted by the same set of parameters using the Havriliak–Negami function incorporating the Vogel–Fulcher–Tamman–Hesse equation for the temperature dependence of relaxation times. The temperature dependence of the relaxation times obtained from the fits to the ultrasonic shear modulus is compared to the shift factors of the dynamic-mechanical measurements. The agreement between both methods is good. This suggests an almost thermorheological simplicity of the samples for the main glass–rubber relaxation and demonstrates the capacity of the ultrasonic rheometer. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1703–1711, 1998  相似文献   

12.
Polymer matrix‐ZnO microcomposites were prepared in different filler concentrations. The electrical relaxation dynamics of all samples was examined by means of broadband dielectric spectroscopy (BDS) over a wide temperature range. Two relaxation modes (namely β and γ), observed in the low temperature region, are attributed to the reorientation of small polar groups of the polymer matrix. Glass‐rubber transition (α‐mode) of the polymeric matrix and interfacial polarization phenomena are considered as responsible for the recorded relaxation processes in the high temperature region. An additional relaxation mode, named intermediate dipolar effect (IDE), is recorded at temperatures higher than ?30 °C in all composites. Its occurrence and dynamics are related to the presence and concentration of the filler. IDE and α‐relaxation are observed in the same frequency and temperature range, leading to a mutual superposition. The two processes were distinguished following a simulation procedure employing the simultaneous fitting of two Havrilliak‐Negami terms and a third term describing the contribution of DC conductivity to dielectric losses. The temperature dependence of relaxation times for α‐mode follows the Vogel‐Tamann‐Fulcher equation, whereas IDE relaxation times follow unusual temperature dependence. The latter is discussed under the assumption of intrinsic interfacial polarization phenomena within ZnO crystal domains. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 445–454, 2009  相似文献   

13.
Dielectric relaxations of several poly(diitaconate)s with cyclobutyl, cycloheptyl, and cyclooctyl groups in the side chain were investigated. The study was performed by determining the dielectric permittivity and loss, depending on the frequency and temperature. Dynamic dielectric measurements indicated several relaxations according to the chemical structure of the polymers. The dielectric behavior of these polymers was compared with those of poly(dicyclohexyl itaconate), previously reported. The α relaxations were analyzed with the Havriliak–Negami equation. Significant differences in the subglass relaxations were observed. A tentative explanation of the molecular origin of each absorption was proposed in terms of the number of carbon atoms of the ring and their conformational versatility. Strong conductive processes were observed in these polymers at low frequencies and high temperatures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1059–1069, 2003  相似文献   

14.
15.
Through improvements on a fully commercial and automatic system measuring frequency andtemperature spectra of the complex elastic, dielectric, and piezoelectric constants of polymerfilms, the precision for measuring complex dielectric constants achieved 2‰ from original 1%.The complex dielectric constants of PVDF, VDF (95 )/VF (5), VDF (52)/TrFE (48) and VDF(47. 5)/TrFE(47. 5)/HeFP (5) over a range of-120-140℃, 10-2-10~4Hz were measured bythe described system. The diminution of chain regularity due to 5mol% vinyl fluoride in the chainof PVDF led to disappearing of α-relaxation and increase in T_g (3℃) of VDF (95)/VF (5).Because of the spatial impediment of 5mol% HeFP in copolymer chain, the Curie point of VDF(52)/TrFE(48) decreased by 30℃ and T_g by 3℃. The behavior of dielectric relaxation indicatedthat 5mol% vinyl fluoride and HeFP made the relaxation strength of noncrystalline regionreduced, the activation energy of local relaxation increased and the relaxation time prolonged respectively.  相似文献   

16.
Recently, tables of parameters used to represent experimental dielectric relaxation data as well as autocorrelation functions have become available. The experimental and autocorrelation function data were represented with the Havriliak–Negami function using rigorous statistical techniques. These tables include not only parameters and their temperature dependencies, but also the confidence intervals for all of the parameters. The important parameters for this work are the two shape parameters, α and β, which represent the width and skewness of the relaxation process, respectively. A comparison is made between the experimental data and several autocorrelation functions by calculating the minimum distance (in units of standard deviations) between the experimental values of αβ parameters for a specific polymer and the αβ parameters corresponding to the autocorrelation functions reported in these tables. Quantities derived from these minimum distances (a distribution function and an error function) are reported for each of the autocorrelation functions. These results are discussed in terms of the basic assumptions of the mode coupling theory. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1887–1897, 1997  相似文献   

17.
Polymers consisting of poly(heterocyclic methacrylate)s are considered as potential materials for clinical applications such as drug delivery and cartilage repair. Much of the success of these systems has been attributed to the complex nature of their water sorption properties. Dielectric permittivity is very sensitive to water sorption. Dielectric relaxation spectroscopy studies have been carried out on two heterocyclic poly(methacrylate)s: poly(tetrahydrofurfuryl methacrylate) (PTHFMA) and poly(3‐methyl tetrahydrofurfuryl methacrylate) (P3MTHFMA). The isochrones representing the dielectric losses show in both cases high conductivity at low frequencies and high temperatures. In PTHFMA two conductive processes are observed, which can be associated to the existence of two types of water sorption. These effects have been analyzed and were removed from the dielectric spectra by using classical empirical equations. Both polymers show ostensible α‐relaxation centered in the vicinity of 350 K at 100 Hz. This relaxation was analyzed by means of the empirical Havriliak‐Negami equation. Reminiscent β‐relaxation could also exist. Both polymers present well defined γ and δ subglass absorptions at approximately 120 K, 160 K for PTHFMA and 125 K, 163 K for P3MTHFMA, at 100 Hz, associated to local intramolecular relaxations in side groups. These relaxations were analyzed using semiempirical symmetric model. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 109–120, 2008  相似文献   

18.
Most of biological cells have microvilli on their surfaces, which significantly influence their dielectric properties. The complex permittivity of a cubical system containing a spherical cell model with cylindrical projections was calculated over a frequency range of 10 kHz to 100 MHz using the three-dimensional finite-element method. The spectra of the complex permittivity consisted of low- and high-frequency relaxation processes which were respectively attributed to the polarization of the membranes covering the projections and the spherical body. Conventional analysis based on the spherical shell model was applied to the simulated spectra to discuss the effects of cell surface morphology on the electric parameters estimated for the plasma membrane and the cytoplasm.  相似文献   

19.
根据平面层状体系介电弛豫理论研究了反渗透膜UTC-70在各种浓度氯化钠和氯化钾溶液中的介电弛豫行为.利用计算机拟合的方法得到膜/溶液体系的介电参数,并由此计算得到了UTC-70膜相和水溶液相的相参数,获得了反映反渗透膜UTC-70荷电情况的信息及其与电解质溶液浓度的关系,介电解析的结果解释了介电弛豫的产生机制.  相似文献   

20.
Aniline oligomers were prepared by the oxidation of aniline with p-benzoquinone in aqueous solutions of methanesulfonic acid (MSA) of various concentrations. Their molecular structures were assessed by Fourier transform infrared spectroscopy. The electrorheological (ER) behavior of their silicone oil suspensions under applied electric field has been investigated. Shear stress at a low shear rate, τ 0.9, was used as a criterion of the rigidity of internal structures created by the application of an electric field. It was established from the fitting of the dielectric spectra of the suspensions with the Havriliak–Negami model that dielectric relaxation strength, as a degree of polarization induced by an external field contributing to the enhanced ER effect, increases and relaxation time, i.e., the response of the particle to the application of the field, decreases when a higher molar concentration of MSA is used. The best values were observed for suspensions of the sample prepared in the presence of 0.5 M of MSA. This suspension creates stiff internal structures under an applied electric field strength of 2 kV mm?1 with τ 0.9 of nearly 50 Pa, which is even slightly of higher value than that obtained for standard polyaniline base ER suspension measured at the same conditions. The concentration of the MSA used in the preparation of oligomers seems to be a crucial factor influencing the conductivity, dielectric properties and, consequently, rheological behavior, and finally ER activity of their suspensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号