首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
BACKGROUND: Urdamycin A, the principle product of Streptomyces fradiae Tü2717, is an angucycline-type antibiotic. The polyketide-derived aglycone moiety is glycosylated at two positions, but only limited information is available about glycosyltransferases involved in urdamycin biosynthesis. RESULTS: To determine the function of three glycosyltransferase genes in the urdamycin biosynthetic gene cluster, we have carried out gene inactivation and expression experiments. Inactivation of urdGT1a resulted in the predominant accumulation of urdamycin B. A mutant lacking urdGT1b and urdGT1c mainly produced compound 100-2. When urdGT1c was expressed in the urdGT1b/urdGT1c double mutant, urdamycin G and urdamycin A were detected. The mutant lacking all three genes mainly accumulated aquayamycin and urdamycinone B. Expression of urdGT1c in the triple mutant led to the formation of compound 100-1, whereas expression of urdGT1a resulted in the formation of compound 100-2. Co-expression of urdGT1b and urdGT1c resulted in the production of 12b-derhodinosyl-urdamycin A, and co-expression of urdGT1a, urdGT1b and urdGT1c resulted in the formation of urdamycin A. CONCLUSIONS: Analysis of glycosyltransferase genes of the urdamycin biosynthetic gene cluster led to an unambiguous assignment of each glycosyltransferase to a certain biosynthetic saccharide attachment step.  相似文献   

2.
Heterologous expression of the urdGT2 gene from the urdamycin producer Streptomyces fradiae Tü2717, which encodes a C-glycosyltransferase, into mutants of the mithramycin producer Streptomyces argillaceus, in which either one or all glycosyltransferases were inactivated, yielded four novel C-glycosylated premithramycin-type molecules. Structure elucidation revealed these to be 9-C-olivosylpremithramycinone, 9-C-mycarosylpremithramycinone, and their respective 4-O-demethyl analogues. In another experiment, both the urdGT2 gene from S. fradiae and the lanGT1 gene from S. cyanogenus, were coexpressed into a S. argillaceus mutant lacking the MtmGIV glycosyltransferase. This experiment, in which genes from three different organisms were combined, resulted in the production of 9-C-(olivo-1-4-olivosyl)premithramycinone. These results prove the unique substrate flexibility of the C-glycosyltransferase UrdGT2, which tolerates not only a variety of sugar-donor substrates, but also various acceptor substrates. The five new hybrid products also represent the first compounds, in which sugars were attached to a position that is normally unglycosylated. The successful combination of two glycosyltransferases in the latter experiment proves that the design of saccharide side chains by combinatorial biosynthetic methods is possible.  相似文献   

3.
Combinatorial biosynthesis is a promising technique used to provide modified natural products for drug development. To enzymatically bridge the gap between what is possible in aglycon biosynthesis and sugar derivatization, glycosyltransferases are the tools of choice. To overcome limitations set by their intrinsic specificities, we have genetically engineered the protein regions governing nucleotide sugar and acceptor substrate specificities of two urdamycin deoxysugar glycosyltransferases, UrdGT1b and UrdGT1c. Targeted amino acid exchanges reduced the number of amino acids potentially dictating substrate specificity to ten. Subsequently, a gene library was created such that only codons of these ten amino acids from both parental genes were independently combined. Library members displayed parental and/or a novel specificity, with the latter being responsible for the biosynthesis of urdamycin P that carries a branched saccharide side chain hitherto unknown for urdamycins.  相似文献   

4.
BACKGROUND: Streptomyces fradiae is the principal producer of urdamycin A. The antibiotic consists of a polyketide-derived aglycone, which is glycosylated with four sugar components, 2x D-olivose (first and last sugar of a C-glycosidically bound trisaccharide chain at the 9-position), and 2x L-rhodinose (in the middle of the trisaccharide chain and at the 12b-position). Limited information is available about both the biosynthesis of D-olivose and L-rhodinose and the influence of the concentration of both sugars on urdamycin biosynthesis. RESULTS: To further investigate urdamycin biosynthesis, a 5.4 kb section of the urdamycin biosynthetic gene cluster was sequenced. Five new open reading frames (ORFs) (urdZ3, urdQ, urdR, urdS, urdT) could be identified each one showing significant homology to deoxysugar biosynthetic genes. We inactivated four of these newly allocated ORFs (urdZ3, urdQ, urdR, urdS) as well as urdZ1, a previously found putative deoxysugar biosynthetic gene. Inactivation of urdZ3, urdQ and urdZ1 prevented the mutant strains from producing L-rhodinose resulting in the accumulation of mainly urdamycinone B. Inactivation of urdR led to the formation of the novel urdamycin M, which carries a C-glycosidically attached D-rhodinose at the 9-position. The novel urdamycins N and O were detected after overexpression of urdGT1c in two different chromosomal urdGT1c deletion mutants. The mutants lacking urdS and urdQ accumulated various known diketopiperazines. CONCLUSIONS: Analysis of deoxysugar biosynthetic genes of the urdamycin biosynthetic gene cluster revealed a widely common biosynthetic pathway leading to D-olivose and L-rhodinose. Several enzymes responsible for specific steps of this pathway could be assigned. The pathway had to be modified compared to earlier suggestions. Two glycosyltransferases normally involved in the C-glycosyltransfer of D-olivose at the 9-position (UrdGT2) and in conversion of 100-2 to urdamycin G (UrdGT1c) show relaxed substrate specificity for their activated deoxysugar co-substrate and their alcohol substrate, respectively. They can transfer activated D-rhodinose (instead of D-olivose) to the 9-position, and attach L-rhodinose to the 4A-position normally occupied by a D-olivose unit, respectively.  相似文献   

5.
UrdGT2 is a d-olivosyltransferase from the metabolic pathway of urdamycin A, an angucycline antitumor and antimicrobial drug. The remarkable feature of this biocatalyst is its ability to set up C-glycosidic bonds. Using an in vivo system suitable to deliver the trideoxysugar rhodinose in both d- and l- configuration we could verify that both have been accepted as substrates and attached to the urdamycin polyketide backbone via a C-glycosidic bond. Regardless of the stereochemistry, these C-glycosides served as acceptor for a subsequent glycosylation step to yield the novel urdamycins R and S with di-rhodinosyl side chains at C-9 of the polyketide moiety.  相似文献   

6.
BACKGROUND: The genetic engineering of antibiotic-producing Streptomyces strains is an approach that became a successful methodology in developing new natural polyketide derivatives. Glycosyltransferases are important biosynthetic enzymes that link sugar moieties to aglycones, which often derive from polyketides. Biological activity is frequently generated along with this process. Here we report the use of glycosyltransferase genes isolated from the landomycin biosynthetic gene cluster to create hybrid landomycin/urdamycin oligosaccharide antibiotics. RESULTS: Production of several novel urdamycin derivatives by a mutant of Streptomyces fradiae Tü2717 has been achieved in a combinatorial biosynthetic approach using glycosyltransferase genes from the landomycin producer Streptomyces cyanogenus S136. For the generation of gene cassettes useful for combinatorial biosynthesis experiments new vectors named pMUNI, pMUNII and pMUNIII were constructed. These vectors facilitate the construction of gene combinations taking advantage of the compatible MunI and EcoRI restriction sites. CONCLUSIONS: The high-yielding production of novel oligosaccharide antibiotics using glycosyltransferase gene cassettes generated in a very convenient way proves that glycosyltransferases can be flexible towards the alcohol substrate. In addition, our results indicate that LanGT1 from S. cyanogenus S136 is a D-olivosyltransferase, whereas LanGT4 is a L-rhodinosyltransferase.  相似文献   

7.
Traditional glycosyltransferase (GT) activity assays are not easily configured for rapid detection nor for high throughput screening because they rely on radioactive product isolation, the use of heterogeneous immunoassays or mass spectrometry. In a typical glycosyltransferase biochemical reaction, two products are generated, a glycosylated product and a nucleotide released from the sugar donor substrate. Therefore, an assay that detects the nucleotide could be universal to monitor the activity of diverse glycosyltransferases in vitro. Here we describe three homogeneous and bioluminescent glycosyltransferase activity assays based on UDP, GDP, CMP, and UMP detection. Each of these assays are performed in a one-step detection that relies on converting the nucleotide product to ATP, then to bioluminescence using firefly luciferase. These assays are highly sensitive, robust and resistant to chemical interference. Various applications of these assays are presented, including studies on the specificity of sugar transfer by diverse GTs and the characterization of acceptor substrate-dependent and independent nucleotide-sugar hydrolysis. Furthermore, their utility in screening for specific GT inhibitors and the study of their mode of action are described. We believe that the broad utility of these nucleotide assays will enable the investigation of a large number of GTs and may have a significant impact on diverse areas of Glycobiology research.  相似文献   

8.
采用高能碰撞诱导解离(CID)-负离子模式基质辅助激光解吸离子化-飞行时间质谱技术(MALDI TOF MS)区别efgD(大肠杆菌O152中O抗原基因簇内)编码的β-1,3-葡萄糖转移酶和wfgD(大肠杆菌O77中O抗原基因簇内)编码的α-1,3-甘露糖转移酶酶促反应产物-两个脂寡糖非对应异构体.结果表明:由高能CI...  相似文献   

9.
Glycosyltransferases (GTs) are a key family of enzymes that catalyze the synthesis of glycosidic bonds in all living organisms. The reaction involves the transfer of a glycosyl moiety and can proceed with retention or inversion of the anomeric configuration. To date, the catalytic mechanism of retaining GTs is a topic of great controversy, particularly for those enzymes containing a putative nucleophilic residue in the active site, for which the occurrence of a double‐displacement mechanism has been suggested. We report native ternary complexes of the retaining glycosyltransferase α‐1,3‐galactosyltransferase (α3GalT) from Bos taurus , which contains such a nucleophile in the active site, in a productive mode for catalysis in the presence of its sugar donor UDP‐Gal, the acceptor substrate lactose, and the divalent cation cofactor. This new experimental evidence supports the occurrence of a front‐side substrate‐assisted SNi‐type reaction for α3GalT, and suggests a conserved common catalytic mechanism among retaining GTs.  相似文献   

10.
Glycosyltransferases (GTs) catalyze the highly specific biosynthesis of glycosidic bonds and, as such, are important both as drug targets and for biotechnological purposes. Despite their broad interest, fundamental questions about their reaction mechanism remain to be answered, especially for those GTs that transfer the sugar with net retention of the configuration at the anomeric carbon (retaining glycosyltransferases, ret-GTs). In the present work, we focus on the reaction catalyzed by lipopolysaccharyl-α-1,4-galactosyltransferase C (LgtC) from Neisseria meningitides. We study and compare the different proposed mechanisms (S(N)i, S(N)i-like, and double displacement mechanism via a covalent glycosyl-enzyme intermediate, CGE) by using density functional theory (DFT) and quantum mechanics/molecular mechanics (QM/MM) calculations on the full enzyme. We characterize a dissociative single-displacement (S(N)i) mechanism consistent with the experimental data, in which the acceptor substrate attacks on the side of the UDP leaving group that acts as a catalytic base. We identify several key interactions that help this front-side attack by stabilizing the transition state. Among them, Gln189, the putative nucleophile in a double displacement mechanism, is shown to favor the charge development at the anomeric center by about 2 kcal/mol, compatible with experimental mutagenesis data. We predict that using 3-deoxylactose as acceptor would result in a reduction of k(cat) to 0.6-3% of that for the unmodified substrates. The reactions of the Q189A and Q189E mutants have also been investigated. For Q189E, there is a change in mechanism since a CGE can be formed which, however, is not able to evolve to products. The current findings are discussed in the light of the available experimental data and compared with those for other ret-GTs.  相似文献   

11.
EryCIII converts alpha-mycarosyl erythronolide B into erythromycin D using TDP-d-desosamine as the glycosyl donor. We report the heterologous expression, purification, in vitro reconstitution, and preliminary characterization of EryCIII. Coexpression of EryCIII with the GroEL/ES chaperone complex was found to enhance greatly the expression of soluble EryCIII protein. The enzyme was found to be highly active with a kcat greater than 100 min-1. EryCIII was quite selective for the natural nucleotide sugar donor and macrolide acceptor substrates, unlike several other antibiotic glycosyl transferases with broad specificity such as desVII, oleG2, and UrdGT2. Within detectable limits, neither 6-deoxyerythronolide B nor 10-deoxymethynolide were found to be glycosylated by EryCIII. Furthermore, TDP-d-mycaminose, which only differs from TDP-d-desosamine at the C4 position, could not be transferred to alphaMEB. These studies lay the groundwork for detailed structural and mechanistic analysis of an important member of the desosaminyl transferase family of enzymes.  相似文献   

12.
WecE gene, encoding a sugar aminotransferase (SAT), has been cloned from E. coli K12 and expressed in E. coli BL21 (DE3). The enzyme was purified and characterized. WecE used TDP-4-keto-6-deoxy-D-glucose (TDP-D-Glc4O) and L-glutamate as a good amino acceptor and donor, respectively, leading to the production of TDP-4-amino-4,6-dideoxy-D-galactose (TDP-Fuc4N), which was identified by NMR studies. WecE also showed a similar activity for TDP-4-keto 6-deoxy-D-mannose (TDP-D-Man4O), but no activity for GDP-4-keto-6-deoxy-D-mannose (GDP-D-Man4O), suggesting that the nucleotide moiety would become a key determinant to the substrate specificity of amine acceptor for the activity of the SAT. Multiple alignments showed that SATs have four highly conserved motifs located around the active site and could be divided into three subgroups (VIalpha, VIbeta, and VIgamma) that might be closely related with their substrate specificities.  相似文献   

13.
The Leloir donors are nucleotide sugars essential for a variety of glycosyltransferases (GTs) involved in the transfer of a carbohydrate to an acceptor substrate, typically a protein or an oligosaccharide. A series of less‐polar nucleotide sugar analogues derived from uridine have been prepared by replacing one phosphate unit with an alkyl chain. The methodology is based on the radical hydrophosphonylation of alkenes, which allows coupling of allyl glycosyl compounds with a phosphate unit suitable for conjugation to uridine. Two of these compounds, the GalNAc and galactose derivatives, were further tested on a model GT, such as GalNAc‐T2 (an important GT widely distributed in human tissues), to probe that both compounds bound in the medium–high micromolar range. The crystal structure of GalNAc‐T2 with the galactose derivative traps the enzyme in an inactive form; this suggests that compounds only containing the β‐phosphate could be efficient ligands for the enzyme. Computational studies with GalNAc‐T2 corroborate these findings and provide further insights into the mechanism of the catalytic cycle of this family of enzymes.  相似文献   

14.
Glycosyltransferases (GTs) comprise a prominent family of enzymes that play critical roles in a variety of cellular processes, including cell signaling, cell development, and host–pathogen interactions. Glycosyl transfer can proceed with either inversion or retention of the anomeric configuration with respect to the reaction substrates and products. The elucidation of the catalytic mechanism of retaining GTs remains a major challenge. A native ternary complex of a GT in a productive mode for catalysis is reported, that of the retaining glucosyl‐3‐phosphoglycerate synthase GpgS from M. tuberculosis in the presence of the sugar donor UDP‐Glc, the acceptor substrate phosphoglycerate, and the divalent cation cofactor. Through a combination of structural, chemical, enzymatic, molecular dynamics, and quantum‐mechanics/molecular‐mechanics (QM/MM) calculations, the catalytic mechanism was unraveled, thereby providing a strong experimental support for a front–side substrate‐assisted SNi‐type reaction.  相似文献   

15.
Recombination generates chimeric proteins whose ability to fold depends on minimizing structural perturbations that result when portions of the sequence are inherited from different parents. These chimeric sequences can display functional properties characteristic of the parents or acquire entirely new functions. Seventeen chimeras were generated from two CYP102 members of the functionally diverse cytochrome p450 family. Chimeras predicted to have limited structural disruption, as defined by the SCHEMA algorithm, displayed CO binding spectra characteristic of folded p450s. Even this small population exhibited significant functional diversity: chimeras displayed altered substrate specificities, a wide range in thermostabilities, up to a 40-fold increase in peroxidase activity, and ability to hydroxylate a substrate toward which neither parent heme domain shows detectable activity. These results suggest that SCHEMA-guided recombination can be used to generate diverse p450s for exploring function evolution within the p450 structural framework.  相似文献   

16.
Growing plants with modified cell wall compositions is a promising strategy to improve resistance to pathogens, increase biomass digestibility, and tune other important properties. In order to alter biomass architecture, a detailed knowledge of cell wall structure and biosynthesis is a prerequisite. We report here a glycan array-based assay for the high-throughput identification and characterization of plant cell wall biosynthetic glycosyltransferases (GTs). We demonstrate that different heterologously expressed galactosyl-, fucosyl-, and xylosyltransferases can transfer azido-functionalized sugar nucleotide donors to selected synthetic plant cell wall oligosaccharides on the array and that the transferred monosaccharides can be visualized “on chip” by a 1,3-dipolar cycloaddition reaction with an alkynyl-modified dye. The opportunity to simultaneously screen thousands of combinations of putative GTs, nucleotide sugar donors, and oligosaccharide acceptors will dramatically accelerate plant cell wall biosynthesis research.  相似文献   

17.
Growing plants with modified cell wall compositions is a promising strategy to improve resistance to pathogens, increase biomass digestibility, and tune other important properties. In order to alter biomass architecture, a detailed knowledge of cell wall structure and biosynthesis is a prerequisite. We report here a glycan array‐based assay for the high‐throughput identification and characterization of plant cell wall biosynthetic glycosyltransferases (GTs). We demonstrate that different heterologously expressed galactosyl‐, fucosyl‐, and xylosyltransferases can transfer azido‐functionalized sugar nucleotide donors to selected synthetic plant cell wall oligosaccharides on the array and that the transferred monosaccharides can be visualized “on chip” by a 1,3‐dipolar cycloaddition reaction with an alkynyl‐modified dye. The opportunity to simultaneously screen thousands of combinations of putative GTs, nucleotide sugar donors, and oligosaccharide acceptors will dramatically accelerate plant cell wall biosynthesis research.  相似文献   

18.
The enzyme RedP is thought to initiate the biosynthesis of the undecylpyrolle component of the antibiotic undecylprodiginine produced by Streptomyces coelicolor. RedP has homology to FabH, which initiates fatty acid biosynthesis by condensing the appropriate acyl-CoA starter unit with malonyl ACP. We have generated a redP-deletion mutant of S. coelicolor M511 (SJM1) and shown that it produces reduced levels of prodiginines and two new analogs, methylundecylprodiginine and methyldodecylprodiginine. Incorporation studies with perdeuterated valine were consistent with these being generated using methylbutyryl-CoA and isobutyryl-CoA as starter units, respectively. Plasmid-based expression of a streptomycete fabH in the SJM1 mutant led to restoration of overall prodiginine titers but the same overall ratio of undecylprodiginines and novel prodiginines. Thus, the redP FabH can be replaced by FabH enzymes with different substrate specificities and provides a method for generating novel prodiginines.  相似文献   

19.
The peptidoglycan glycosyltransferases (GTs) are essential enzymes that catalyze the polymerization of glycan chains of the bacterial cell wall from lipid II and thus constitute a validated antibacterial target. Their enzymatic cavity is composed of a donor site for the growing glycan chain (where the inhibitor moenomycin binds) and an acceptor site for lipid II substrate. In order to find lead inhibitors able to fill this large active site, we have synthesized a series of substrate analogues of lipid I and lipid II with variations in the lipid, the pyrophosphate, and the peptide moieties and evaluated their biological effect on the GT activity of E. coli PBP1b and their antibacterial potential. We found several compounds able to inhibit the GT activity in vitro and cause growth defect in Bacillus subtilis . The more active was C16-phosphoglycerate-MurNAc-(L-Ala-D-Glu)-GlcNAc, which also showed antibacterial activity. These molecules are promising leads for the design of new antibacterial GT inhibitors.  相似文献   

20.
An array of sugar oxazolines was synthesized and tested as donor substrates for the Arthrobacter endo-beta-N-acetylglucosaminidase (Endo-A)-catalyzed glycopeptide synthesis. The experiments revealed that the minimum structure of the donor substrate required for Endo-A catalyzed transglycosylation is a Man beta1-->4-GlcNAc oxazoline moiety. Replacement of the beta-D-Man moiety with beta-D-Glc, beta-D-Gal, and beta-D-GlcNAc monosaccharides resulted in the loss of substrate activity for the disaccharide oxazoline. Despite this, the enzyme could tolerate modifications such as attachment of additional sugar residues or a functional group at the 3- and/or 6-positions of the beta-D-Man moiety, thus allowing a successful transfer of selectively modified oligosaccharides to the peptide acceptor. On the other hand, the enzyme has a great flexibility for the acceptor portion and could take both small and large GlcNAc-peptides as the acceptor. The studies implicate a great potential of the endoglycosidase-catalyzed transglycosylation for constructing both natural and selectively modified glycopeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号