首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DLC (Diamond-like carbon films) were prepared by pulsed laser ablation of a liquid target at substrate temperatures from 18 to 600°C using 248 nm KrF excimer laser. The sp3 hybridization state carbon formation was additionally promoted by gaseous H2O2 flow through the reaction chamber and substrate excitation by the same laser beam. Deposited DLC films were characterised by Raman scattering spectroscopy and atomic force microscopy (AFM). Comparative AFM and Raman study shows that the increase in the content of sp3 type bonding in DLC is in correlation with the increase of the surface roughness of the samples prepared.  相似文献   

2.
Thin films of the magnetic shape-memory (MSM) material NiMnGa have been deposited on Si(100) substrates using pulsed laser deposition. The -–200 300nm-thick films were prepared at substrate temperatures ranging from 450 °C to 650 °C and at different background Ar pressures. Large saturation magnetizations, up to 60% of the bulk value, were measured for the films. Only the films deposited in vacuum or at Ar pressures below 10-3 mbar and at temperatures between 500 °C and 600 °C were ferromagnetic. The films are mainly crystallized in the austenitic phase and they have a smooth surface with a low droplet density (0.01 m-2). The magnetization and surface quality are sufficient that the films could be utilized in the realization of thin-film MSM devices. PACS 75.70.Ak  相似文献   

3.
The influence of substrate temperature on structural and dielectric properties of cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 (BZN) thin films prepared by pulsed laser deposition process has been investigated. BZN thin films were deposited on Pt/Ti/SiO2/Si(1 0 0) substrate and in situ annealed at 700 °C. The results indicate that the substrate temperature has a significant effect on the structural and dielectric properties of BZN thin films. The films exhibit a cubic pyrochlore structure in the substrate temperature range from 550 °C to 700 °C and at the annealing temperature of 700 °C. With further increase of substrate temperature to 750 °C, the phases of Bi2O3, BiNbO4 and Bi5Nb3O15 can be detected in the XRD pattern due to the Zn loss. The dielectric constant and loss tangent of the films deposited at 650 °C are 192 and 6 × 10−4 at 10 kHz, respectively. The tunability is 10% at a dc bias field of 0.9 MV/cm.  相似文献   

4.
A SnO2 film has been prepared by an excimer laser metal organic deposition (ELMOD) process using an XeCl laser. The effects of the laser fluence, shot number, and the pretreatment temperature of the Sn acetylacetonate (Sn-acac) on the crystallization of the SnO2 film were investigated by X-ray diffraction and infrared spectroscopy. When the MO spin-coated film preheated at room temperature on a Si substrate was irradiated by the laser at a fluence of 100 mJ/cm2 and at a repetition rate of 10 Hz for 5 min, a crystallized SnO2 film was successfully obtained without heat treatment. At a fluence of 260 mJ/cm2, the highest crystalline film was formed. On the other hand, when the amorphous SnO2 film was irradiated by the laser at 260 mJ/cm2, the crystallinity of the SnO2 film was improved. SnO2 films were also prepared by conventional thermal MOD in a temperature range from 300 to 900 °C. The crystallinity of the SnO2 films prepared by the ELMOD process at room temperature was higher than that of the films prepared by heating at 900 °C for 60 min. PACS 81.15.Fg; 81.15.-z; 81.16.Mk; 82.50.Hp; 73.61.Le  相似文献   

5.
SrTiO3 homoepitaxy was investigated under various conditions using the pulsed laser deposition method. The growth mode was determined by in-situ reflection high-energy electron diffraction, and the surface of the films was characterized by ex-situ atomic force microscopy. At the laser fluence of 0.68 J/cm2, island growth was observed below 500 °C substrate temperature, while the growth mode turned into layer-by-layer growth above 500 °C. On further raising the substrate temperature, the step-flow growth mode prevailed above 800 °C. We thus demonstrated that step-flow growth in SrTiO3 homoepitaxy is possible at a temperature as low as 800 °C.  相似文献   

6.
Be3N2 thin films have been grown on Si(1 1 1) substrates using the pulsed laser deposition method at different substrate temperatures: room temperature (RT), 200 °C, 400 °C, 600 °C and 700 °C. Additionally, two samples were deposited at RT and were annealed after deposition in situ at 600 °C and 700 °C. In order to obtain the stoichiometry of the samples, they have been characterized in situ by X-ray photoelectron (XPS) and reflection electron energy loss spectroscopy (REELS). The influence of the substrate temperature on the morphological and structural properties of the films was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that all prepared films presented the Be3N2 stoichiometry. Formation of whiskers with diameters of 100-200 nm appears at the surface of the films prepared with a substrate temperature of 600 °C or 700 °C. However, the samples grown at RT and annealed at 600 °C or 700 °C do not show whiskers on the surface. The average root mean square (RMS) roughness and the average grain size of the samples grown with respect the substrate temperature is presented. The films grown with a substrate temperature between the room temperature to 400 °C, and the sample annealed in situ at 600 °C were amorphous; while the αBe3N2 phase was presented on the samples with a substrate temperature of 600 °C, 700 °C and that deposited with the substrate at RT and annealed in situ at 700 °C.  相似文献   

7.
Zinc oxide/molybdenum-doped indium oxide/zinc oxide (ZnO/IMO/ZnO) multilayer thin films are grown using pulsed laser deposition technique. The effect of substrate temperature on structural, optical, and electrical properties of multilayer films is studied. It is observed that films grown at high substrate temperature are oriented along (0 0 2) and (2 2 2) direction for ZnO and IMO respectively. The crystallinity of these films increases with increase in substrate temperature. It is also seen that conductivity, carrier concentration, and mobility increase with increase in temperature. The multilayer film grown at 500 °C has low resistivity (7.67 × 10−5 Ω cm), high carrier concentration (3.90 × 1020 cm−3), and high mobility (209 cm2/Vs).  相似文献   

8.
脉冲直流偏压增强的高质量立方氮化硼薄膜的合成   总被引:1,自引:0,他引:1       下载免费PDF全文
田晶泽  吕反修  夏立芳 《物理学报》2001,50(11):2258-2262
采用磁增强活性反应离子镀系统成功地合成了立方氮化硼薄膜.通过给基片施加脉冲直流偏压以代替传统的射频偏压,增强了立方氮化硼的成膜稳定性,研究了基片的直流脉冲偏压、等离子体放电电流、通入气体流量比(Ar/N2)和基片温度沉积参数对立方氮化硼薄膜形成的影响规律.结果表明:随着基片负偏压和放电电流的增大,薄膜中立方氮化硼的纯度提高,当基片负偏压为155V,放电电流为15A时,可获得几乎单相的立方氮化硼薄膜.基片温度为500℃和Ar/N2流量比为10时,最有利于立方氮化硼 关键词: 立方氮化硼 活性反应离子镀 脉冲偏压  相似文献   

9.
Cobalt-DLC multilayer films were deposited with increasing content of cobalt, keeping carbon content constant by pulsed laser deposition technique. A cobalt free carbon film was also deposited for comparison. Excimer laser was employed to ablate the materials onto silicon substrate, kept at 250 °C, while post-deposition annealing at 400 °C was also performed in situ. The formation of cobalt grains within the carbon matrix in Co-DLC films can be seen through scanning electron and atomic force micrographs while no grains on the surface of the cobalt-free DLC film were observed. Raman spectra of all the films show D- and G-bands, which is a confirmation that the films are DLC in nature. According to Vibrating sample magnetometer (VSM) measurements, the DLC films with cobalt revealed ferromagnetic behaviour whereas the cobalt free DLC film exhibited diamagnetic behaviour. The pure DLC film also shows ferromagnetic nature when diamagnetic background is subtracted. Spectroscopic Ellipsometry (SE) analysis showed that the optical band gaps, refractive indices and extinction coefficients of Co-DLC films can be effectively tuned with increasing content of cobalt.  相似文献   

10.
In this study, SrAl2O4:Eu2+,Dy3+ thin film phosphors were deposited on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique. The films were deposited at different substrate temperatures in the range of 40-700 °C. The structure, morphology and topography of the films were determined by using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). Photoluminescence (PL) data was collected in air at room temperature using a 325 nm He-Cd laser as an excitation source. The PL spectra of all the films were characterized by green phosphorescent photoluminescence at ∼530 nm. This emission was attributed to 4f65d1→4f7 transition of Eu2+. The highest PL intensity was observed from the films deposited at a substrate temperature of 400 °C. The effects of varying substrate temperature on the PL intensity were discussed.  相似文献   

11.
Yttria-stabilized zirconia (YSZ) buffer layers were deposited on CeO2 buffered biaxially textured Ni-W substrate by reel-to-reel pulsed laser deposition (PLD) for the application of YBa2Cu3O7−δ (YBCO) coated conductor and the influence of substrate temperature and laser energy on their crystallinity and microstructure were studied. YSZ thin films were prepared with substrate temperature ranging from 600 to 800 °C and laser energy ranging from 120 to 350 mJ. X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to investigate how thin film structure and surface morphology depend on these parameters. It was found that the YSZ films grown at substrate temperature below 600 °C or laser energy above 300 mJ showed amorphous phase, the (0 0 1) preferred orientation and the crystallinity of the YSZ films were improved with increasing the temperature, but the surface roughness increased simultaneously, the SEM images of YSZ films on CeO2/NiW tapes showed surface morphologies without micro-cracks. Based on these results, we developed the epitaxial PLD-YSZ buffer layer process at the tape transfer speed of 3-4 m/h by the reel-to-reel system for 100 m class long YBCO tapes.  相似文献   

12.
Lead-free ferroelectric K0.5Na0.5NbO3 (KNN) thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition process. The structures, crystal orientations and electrical properties of thin films have been investigated as a function of deposition temperature from 680 °C to 760 °C. It is found that the deposition temperature plays an important role in the structures, crystal orientations and electrical properties of thin films. The crystallization of thin films improves with increasing deposition temperature. The thin film deposited at 760 °C exhibits strong (0 0 1) preferential orientation, large dielectric constant of 930 and the remnant polarization of 8.54 μC/cm2.  相似文献   

13.
Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10−6 mbar in the temperature range from 400 to 800 °C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J × cm−2 has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated.Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature.  相似文献   

14.
Optical and electrical properties of diamond-like carbon (DLC) films deposited by pulsed laser ablation of graphite target at different substrate temperatures are reported. By varying the deposition temperature from 400 to 25℃, the film optical transparency and electrical resistivity increase severely. Most importantly, the transparency and resistivity properties of the DLC films can be tailored to approaching diamond by adjusting the deposition temperature, which is critical to many applications. DLC films deposited at low temperatures show excellent optical transmittance and high resistivity. Over the same temperature regime an increase of the spa bonded C content is observed using visible Raman spectroscopy, which is responsible for the enhanced transparency and resistivity properties.  相似文献   

15.
Biocompatibility and physicochemical properties of diamond-like carbon (DLC) thin layers prepared by pulsed laser deposition method were studied. The films of high and low diamond/graphite content were prepared by changing the laser energy density on the graphite target from 4 to 11 J cm−2. The bonds and surface properties as roughness, atomic force microscopy topology, contact angle parameters, and zeta potential were measured. The cell adhesion/proliferation on DLC layers was tested using normal human fibroblasts and keratinocytes.  相似文献   

16.
Indium tin oxide (ITO) thin films were prepared by pulsed laser deposition (PLD) on glass substrate at room temperature. Structural, optical, and electrical properties of these films were analyzed in order to investigate its dependence on oxygen pressure, and rapid thermal annealing (RTA) temperature. High quality ITO films with a low resistivity of 3.3 × 10−4 Ω cm and a transparency above 90% were able to be formed at an oxygen pressure of 2.0 Pa and an RTA temperature of 400 °C. A four-point probe method, X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-NIR grating spectrometer are used to investigate the properties of ITO films.  相似文献   

17.
Diamond-like carbon (DLC) films were fabricated by pulsed laser ablation of a liquid target. During deposition process the growing films were exited by a laser beam irradiation. The films were deposited onto the fused silica using 248 nm KrF eximer laser at room temperature and 10−3 mbar pressure. Film irradiation was carried out by the same KrF laser operating periodically between the deposition and excitation regimes. Deposited DLC films were characterized by Raman scattering spectroscopy. The results obtained suggested that laser irradiation intensity has noticeable influence on the structure and hybridization of carbon atoms deposited. For materials deposited at moderate irradiation intensities a very high and sharp peak appeared at 1332 cm−1, characteristic of diamond crystals. At higher irradiation intensities the graphitization of the amorphous films was observed. Thus, at optimal energy density the individual sp3-hybridized carbon phase was deposited inside the amorphous carbon structure. Surface morphology for DLC has been analyzed using atomic force microscopy (AFM) indicating that more regular diamond cluster formation at optimal additional laser illumination conditions (∼20 mJ per impulse) is possible.  相似文献   

18.
The preparation process, crystallinity and electrical properties of pulse laser deposited Pb(ZrxTi1−x)O3 (PZT) thin films were investigated in this paper. PZT (x = 0.93) thin film samples deposited at different substrate temperatures were prepared. Si (1 1 0) was the substrate; Ag and YBCO were the top electrode and the bottom electrode respectively. The bottom electrode YBCO was deposited on the Si substrate by pulsed laser deposition (PLD), and then PZT was epitaxially deposited on YBCO also by PLD. After annealing, the top electrode Ag was prepared on PZT by thermal evaporation, and then the Ag/PZT/YBCO/Si structured thin films were obtained. The XRD and the analysis of their electrical characters showed that, when the substrate temperature was elevated from 600 °C to 800 °C, the crystallinity and electrical properties of PZT thin films became better and better, and the FR(LT)FR(HT) phase transition of PZT (x = 0.93) thin films occurred at 62 °C. The PZT film deposited at 800 °C had the best pyroelectric properties, and when the FR(LT)FR(HT) phase transition of this film occurred, the peak value of pyroelectric coefficient (p) was obtained, with a value of 1.96 × 10−6 C/(cm2 K). The PZT film deposited at 800 °C had the highest remnant polarization (Pr) and the lowest coercive field (Ec), with the values of 34.3 μC/cm2 and 41.7 kV/cm respectively.  相似文献   

19.
Bi3.99Ti2.97V0.03O12 (BTV) thin films were grown by pulsed laser deposition at substrate temperatures ranging between 650 and 750 °C. The structural phase, and orientation of the deposited films were investigated in order to understand the effect of the deposition parameters on the properties of the BTV films. As the substrate temperature was increased to 700 °C, the films started showing a tendency of assuming a c-axis preferred orientation, while at lower temperatures polycrystalline films were formed. The Au/BTV/Pt capacitor showed an interesting dependence of the remnant polarization (Pr) as well as dc leakage current values on the growth temperature. The film deposited at 675 °C showed a very large 2Pr of 42 μC cm−2, which is the largest for BTV thin films among the values reported so far.  相似文献   

20.
Si K-edge XAFS was used to characterize a stoichiometric SiC film prepared by pulsed KrF laser deposition. The film was deposited on a p-type Si(1 0 0) wafer at a substrate temperature of 250 °C in high vacuum with a laser fluence of ∼5 J/cm2. The results reveal that the film contains mainly a SiC phase with an amorphous structure in which the Si atoms are bonded to C atoms in its first shell similar to that of crystalline SiC powder but with significant disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号