首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
PAMAM-Au nanocomposites prepared by reduction of HAuCl4 with NaBH4 in the presence of the sixth-generation polyamidoamine (PAMAM) took a unique structure, in which the 2 nm-sized Au nanoparticles were encapsulated in the interior cavities of the PAMAM molecules. The PAMAM-Au nanocomposites as a new type of nanomaterial were assembled layer-by-layer with myoglobin (Mb) into {PAMAM-Au/Mb}n films on solid surfaces, which was confirmed by quartz crystal microbalance (QCM), UV-vis spectroscopy, and cyclic voltammetry (CV). The direct electrochemistry of Mb in the films assembled on pyrolytic graphite (PG) electrodes was realized and used to catalyze the reduction of hydrogen peroxide. As compared to {PAMAM/Mb}n films containing no Au nanoparticles, the {PAMAM-Au/Mb}n films showed much better electrochemical and electrocatalytic properties, indicating the conductive effect of Au nanoparticles inside PAMAM on bridging electron transfer between Mb and PG electrodes.  相似文献   

2.
The ionic strength in supporting electrolyte solution had a significant influence on the electrochemical and electrocatalytic behaviors of myoglobin (Mb) in {HA/Mb}n films, which were assembled layer-by-layer on pyrolytic graphite (PG) electrodes with oppositely charged hyaluronic acid (HA) and Mb. The results of cyclic voltammetry (CV), quartz crystal microbalance (QCM), scanning electron microscopy (SEM), rotating disk voltammetry (RDV), and electrochemical impedance spectroscopy (EIS) showed that after incubation with testing solution at high concentration of salt (CKCl), the {HA/Mb}n films swelled and the film permeability was enhanced, suggesting that the external salt ions and accompanied water molecules in the exposure solution are incorporated into the films. Systematic investigation of the type and size effect of counterions in supporting electrolyte solution on the electrochemical responses for the {HA/Mb}n films and the positive shift of the formal potential (E degrees ') with CKCl suggest that it is cationic rather than anionic counterions that control the electrode process of {HA/Mb}n films at PG electrodes with electron hopping mechanism. The salt-induced swelling of {HA/Mb}n films facilitated the transportation of counterions, and then accelerated the electron transfer of Mb in the films with the underlying electrodes, making the film electrodes show better CV responses. The comparative study showed that only Mb layer-by-layer films assembled with "soft" and flexible polyions could demonstrate the salt-induced effect and that the {HA/Mb}n films showed better swelling capability than {PSS/Mb}n films (PSS = poly(styrenesulfonate)) due to the unique character of HA.  相似文献   

3.
In the present work, strong polybase quaternized hydroxyethyl cellulose ethoxylate (HECE) and weak polyacid alginate (AA) were assembled into {HECE/AA} n layer-by-layer (LBL) films on electrodes by electrostatic interaction between them, and the films were then immersed in myoglobin (Mb) solution to load Mb into the films, designated as {HECE/AA}n-Mb. The {HECE/AA}n-Mb films showed a nearly reversible cyclic voltammetric (CV) peak pair at about -0.34 V vs SCE in pH 7.0 buffers for Mb heme Fe(III)/Fe(II) redox couple, and the surface concentration of electroactive Mb in the films (Gamma*) was affected significantly by the pH of Mb loading solution and testing solution. The amount of Mb loaded from pH 5.0 solution was much larger than that from pH 9.0 solution, which is mainly attributed to the higher degree of swelling, porosity, and permeability of {HECE/AA}n films at pH 5.0 than at pH 9.0. In addition, the electrostatic interaction between Mb and the AA component in the films might also play an important role in Mb loading. The pH of the testing solution where {HECE/AA}n-Mb films were tested by CV also influenced the Gamma* value, showing that the fraction of electroactive Mb among the total Mb loaded into the films increased remarkably as the pH of the testing solution decreased. This result is rationalized in terms of the pH-dependent film permeability toward counterions and the electron-hopping mechanism in electron transfer of redox proteins in the film phase. This model system may provide a general and effective approach to control the electroactivity of immobilized redox proteins in the multilayer assembly containing weak polyions by adjusting pH and may guide us to develop the new kind of controllable electrochemical biosensors based on the direct electrochemistry of enzymes.  相似文献   

4.
When {CS/HA}n layer-by-layer films assembled by oppositely charged chitosan (CS) and hyaluronic acid (HA) were immersed in myoglobin (Mb) solution at pH 5.0, Mb was gradually loaded into the {CS/HA}n films, designated as {CS/HA}n-Mb. The cyclic voltammetric (CV) peak pair of Mb FeIII/FeII redox couple for {CS/HA}n-Mb films on pyrolytic graphite (PG) electrodes was used to investigate the loading behavior of {CS/HA}n films toward Mb. The various influencing factors, such as the number of bilayers (n), the pH of Mb loading solution, and the ionic strength of solution, were investigated by different electrochemical methods and other techniques. The results showed that the main driving force for the bulk loading of Mb was most probably the electrostatic interaction between oppositely charged Mb in solution and HA in the films, while other interactions such as hydrogen bonding and hydrophobic interaction may also play an important role. Other polyelectrolyte multilayer (PEM) films with different components were compared with {CS/HA}n films in permeability and Mb loading, and electroactive probes with different size and surface charge were compared in their incorporation into PEM films. The results suggest that due to the unique structure of CS and HA, {CS/HA}n films with relatively low charge density are packed more loosely and more easily swelled by water, and have better permeability, which may lead to the higher loading amount and shorter loading time for Mb. The protein-loaded PEM films provide a new route to immobilize redox proteins on electrodes and realize the direct electrochemistry of the proteins.  相似文献   

5.
《Analytical letters》2012,45(2-3):242-250
Natural polymer polysaccharides chitosan (CS) was successfully assembled with phytic acid (PA) into {PA/CS}n layer-by-layer films. Myoglobin (Mb) could be gradually “absorbed” or loaded into {PA/CS}n films when the films were immersed into Mb solutions, forming {PA/CS}n-Mb films. The {PA/CS}n-Mb films demonstrated well-defined and quasi-reversible cyclic voltammetry (CV) responses for Mb FeIII/FeII redox couple and were used to catalyze electrochemical reduction of oxygen and hydrogen peroxide. The interaction between Mb and {PA/CS}n films was explored and discussed, which suggested that the electrostatic attraction might play a major role in loading Mb into the films. This new kind of film incorporated with redox proteins could be used to fabricate the new type of biosensors or bioreactors without using mediators.  相似文献   

6.
《Electroanalysis》2006,18(15):1511-1522
Three different types of myoglobin (Mb) layer‐by‐layer films were assembled respectively with TiO2 sol‐gel by vapor‐surface deposition, TiO2 nanoparticles, and poly(styrenesulfonate), designated as {SG‐TiO2/Mb}n, {NP‐TiO2/Mb}n, and {PSS/Mb}n. The permeability of the films was studied and compared by rotating disk voltammetry (RDV) and electrochemical impedance spectroscopy (EIS) with different electroactive probes, showing a general permeability sequence of {SG‐TiO2/Mb}n>{NP‐TiO2/Mb}n>{PSS/Mb}n. The electrochemical and electrocatalytic activity of Mb in these films were also investigated and compared by cyclic voltammetry (CV), RDV, and amperometry, indicating that among the three Mb films, {SG‐TiO2/Mb}n films demonstrated the highest maximum surface concentration of electroactive Mb and the best electrocatalytic performances toward reduction of H2O2. All these advantages could be attributed to the unique architecture and porous structure of {SG‐TiO2/Mb}n films, which could greatly facilitate the mass transport of small counterions and catalytic substrates within the films. The various influencing factors on the permeability, electrochemistry, and electrocatalysis of the Mb films were also investigated in detail.  相似文献   

7.
Myoglobin (Mb), with different net surface charges at different pH in buffers and negatively charged hyaluronic acid (HA) at pH 5.0 in solutions were alternately adsorbed onto various solid surfaces and successfully assembled into {Mb/HA}(n) layer-by-layer films. The Mb in {Mb/HA}(n) films showed a quasi-reversible cyclic voltammetry (CV) response for its heme Fe(III)/Fe(II) redox couple. Quartz crystal microbalance (QCM) and CV were used to confirm the film growth and characterize the films. The interaction between Mb and HA and the influencing factors for Mb adsorption on HA surface, such as pH, Mb concentration, and ionic strength, were investigated in detail. The assembly driving force for {Mb/HA}(n) films, especially for the films assembled with like-charged Mb and HA, was found to be of electrostatic origin, while the secondary interaction such as hydrophobic interaction also plays an important role in some circumstances. Although the growth of {Mb(pH 7.0)/HA}(n) and {Mb(pH 9.0)/HA}(n) films was linear with the adsorption step, the exponential growth of {Mb(pH 5.0)/HA}(n) films was observed, especially when the films became thick. This exponential increase of mass and thickness with deposition step for {Mb(pH 5.0)/HA}(n) films was most probably attributed to the diffusion mechanism in which some HA molecules could diffuse in to and out of the whole films during the film assembly. Atomic force microscopy (AFM) results supported this speculation. UV-vis and IR spectroscopies of {Mb/HA}(n) films, combined with the comparative CV experiments of {Mb/HA}(n) and {catalase/HA}(n) films, suggest that Mb in the {Mb/HA}(n) multilayer films retains its near-native structure.  相似文献   

8.
In the present work, small-molecular phytic acid (PA) with its unique structure was successfully assembled with myoglobin (Mb) into {PA/Mb}n layer-by-layer films on solid surfaces. Quartz crystal microbalance (QCM) and cyclic voltammetry (CV) were used to monitor or confirm the assembly process. IR and UV–vis spectroscopy indicate that the Mb in {PA/Mb}n films retains its near native structure. The direct electrochemistry of Mb was realized in this new kind of films at pyrolytic graphite (PG) electrodes, and was used to electrocatalyze the reduction of various substrates. The interaction between PA and Mb under different pH conditions was also explored. Not only the oppositely charged PA and Mb at pH 5.0, but also the likely charged PA and Mb at pH 9.0, could be assembled into {PA/Mb}n films. This work provides a novel avenue to fabricate protein multilayer films with small molecules and realizes the direct electrochemistry of redox proteins in the films.  相似文献   

9.
Negatively charged heme protein hemoglobin (Hb) or myoglobin (Mb) at pH 9.0 and positively charged poly(diallyldimethylammonium) (PDDA) were alternately adsorbed on the surface of CaCO(3) nanoparticles, forming core-shell CaCO(3)-[PDDA/(protein/PDDA)(m)] ([protein-m]) nanoclusters. Oppositely charged [protein-m] and poly(styrenesulfonate) (PSS) were then assembled layer by layer on various solid substrates, forming {[protein-m]/PSS}(n) films. In the meantime, ordinary layer-by-layer films of heme proteins with CaCO(3) nanoparticles ({protein/CaCO(3)}(n)) were also grown on solid surfaces. Transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectroscopy, quartz crystal microbalance (QCM), and cyclic voltammetry (CV) were used to characterize the nanoclusters and monitor the growth of the two types of films. Both kinds of protein films assembled on pyrolytic graphite (PG) electrodes exhibited well-defined, nearly reversible CV reduction-oxidation peaks, characteristic of heme Fe(III)/Fe(II) redox couples, and were used to catalyze the electrochemical reduction of hydrogen peroxide. The {[protein-m]/PSS}(n) films demonstrate distinct advantages over the {protein/CaCO(3)}(n) films due to their larger fraction of electroactive proteins, higher catalytic efficiency, and better thermostability. The penetration experiments of the electroactive probe into these films indicate that the {[protein-m]/PSS}(n) nanocluster films possess more pores or channels than the simple {protein/CaCO(3)}(n) films, which may be beneficial to counterion transport in the charge-hopping mechanism and helpful for the diffusion of catalysis substrates into the films. In addition, the electrochemical and biocatalytic activity of protein nanocluster films can be tailored by controlling the number of bilayers assembled on the nanoparticle cores (m) as well as the film thickness or the number of nanocluster layers on the electrodes (n).  相似文献   

10.
通过静电层层组装技术在玻碳(GC)电极表面制备{多壁碳纳米管(MWCNT)/聚二烯丙基二甲基氯化铵(PDDA)}n多层膜,并采用循环伏安法在多层膜的表面电化学修饰一层磷钼酸(PMo12)膜,构筑GC/{MWCNT/PDDA}n-PMo12复合膜修饰电极.利用SEM对比观察{MWCNT/PDDA}n和{PDDA/MWCNT}n-PMo12的微观结构,并研究该复合膜修饰电极的电化学及其对溴酸盐(BrO3-)电催化还原性质.在此基础上研发一种基于GC/{MWCNT/PDDA}n-PMo12复合膜修饰电极的电流型BrO3-传感器,该传感器表现出明显增大的响应电流.在最优的实验条件下,采用电流时间曲线(i-t)法考察该复合膜修饰电极对BrO3-的安培响应.实验结果表明,该传感器在BrO3-浓度为50~400nmol/L的范围内具有良好的线性关系,相关系数R2为0.9950,响应时间为1.53s,检出限为20nmol/L,灵敏度为13.81mA(mmol/L)-1cm-2.  相似文献   

11.
Electroactive multilayer film of myoglobin (Mb)-, chitosan (CS)-, and poly(dimethyldiallylammonium chloride) (PDDA)-wrapped multi-wall carbon nanotubes (MWNTs) is fabricated on a gold electrode via layer-by-layer (LBL) technique. The assembled multilayer films is characterized by scanning electron microscopy (SEM), UV-vis spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). UV-vis spectroscopy showed that Mb in the films retained its near-native structure. The stable multilayerfilm-modified gold electrodes showed good electroactivity in protein-free buffer solution, which is originated from protein heme Fe(III)/Fe(II) redox couple. The modified electrode exhibited good electrocatalytic property toward reduction of H2O2 and trichloroacetic acid, indicating the potential application as amperometric biosensor. Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 11, pp. 1366–1376. The text was submitted by the authors in English.  相似文献   

12.
Novel protein core-shell nanocluster films were assembled layer by layer on solid surfaces. In the first step, positively charged heme protein hemoglobin (Hb) or myoglobin (Mb) and negatively charged poly(styrenesulfonate) (PSS) were alternately adsorbed on the surface of SiO2 nanoparticles, forming core-shell SiO2-(protein/PSS)m nanoclusters. In the second step, the SiO2-(protein/PSS)m nanoclusters and polycationic poly(ethylenimine) (PEI) were assembled layer by layer on various solid substrates, forming [[SiO2-(protein/PSS)m]/PEI]n films. Various techniques were used to characterize the nanoclusters and monitor the film growth. [[SiO2-(protein/PSS)m]/PEI]n films at pyrolytic graphite (PG) electrodes exhibited well-defined, chemically reversible cyclic voltammetric reduction-oxidation peaks characteristic of the heme Fe(III)/Fe(II) redox couples. The proteins in the films retained near native conformations in the medium pH range, and the films catalyzed electrochemical reduction of oxygen and hydrogen peroxide. Advantages of the nanocluster films over the simple [SiO2/protein]n layer-by-layer films include a larger fraction of electroactive protein and higher specific biocatalytic activity. Using this approach, biocatalytic activity can be tailored and controlled by varying the number of bilayers deposited on the nanoparticle cores and the number of nanocluster layers on electrodes.  相似文献   

13.
Heme protein hemoglobin (Hb) or myoglobin (Mb) and silica nanoparticles in a variety of charge states were assembled layer-by-layer into films on solid surfaces to investigate the driving forces for film assembly. Cyclic voltammetry (CV), quartz crystal microbalance (QCM), X-ray photoelectron spectroscopy (XPS), and UV-vis and reflectance absorption infrared (RAIR) spectroscopy were used to characterize the different [SiO2/protein]n films. Even when the proteins and silica were both negatively charged, stable layer-by-layer [SiO2/protein]n films were successfully fabricated, although amounts of protein were smaller than when nanoparticles and proteins had opposite charges. Results suggest the importance of localized Coulombic attractions between the negative nanoparticle surface and positively charged amino acid residues on the Mb or Hb surfaces in the assembly and for the stability of [SiO2/protein]n films.  相似文献   

14.
Amine-terminated polyamidoamine (PAMAM) dendrimers were immobilized on glassy carbon electrodes (GCEs) via electrochemical oxidation of the terminal amine groups of dendrimers. The electrochemical immobilization of dendrimers was confirmed by cyclic voltammetry (CV) and X-ray photoelectron spectroscopy (XPS). The immobilized dendrimer films were robust and behaved as charge-selective electrochemical gates for oppositely charged redox molecules. The immobilization approach was applied to assemble Au dendrimer-encapsulated nanoparticles (Au DENs, dia. 1.5 ± 0.3 nm) on GCEs, and the resulting Au DEN films showed electrocatalytic activity to hydrazine oxidation.  相似文献   

15.
Films constructed layer-by-layer on electrodes with architecture {protein/hyaluronic acid (HA)}n containing myoglobin (Mb) or horseradish peroxidase (HRP) were protected against protein damage by H2O2 by using outer catalase layers. Peroxidase activity for substrate oxidation requires activation by H2O2, but {protein/HA}n films without outer catalase layers are damaged slowly and irreversibly by H2O2. The rate and extent of damage were decreased dramatically by adding outer catalase layers to decompose H2O2. Comparative studies suggest that protection results from catalase decomposing a fraction of the H2O2 as it enters the film, rather than by an in-film diffusion barrier. The outer catalase layers controlled the rate of H2O2 entry into inner regions of the film, and they biased the system to favor electrocatalytic peroxide reduction over enzyme damage. Catalase-protected {protein/HA}n films had an increased linear concentration range for H2O2 detection. This approach offers an effective way to protect biosensors from damage by H2O2.  相似文献   

16.
In this paper, a carbon ionic liquid electrode (CILE) was fabricated using ionic liquid 1-hexylpyridinium hexafluorophosphate as modifier, which was further in situ electrodeposited with graphene (GR) and gold nanoparticles step by step to get an Au/GR nanocomposite modified CILE. Myoglobin (Mb) was further immobilized on the Au/GR/CILE surface with Nafion film to get the modified electrode denoted as Nafion/Mb/Au/GR/CILE. Cyclic voltammetric experiments indicated that a pair of well-defined quasi-reversible redox peaks appeared in pH 3.0 phosphate buffer solution with the formal potential (E 0′) located at ?0.197 V (vs. saturated calomel electrode), which was the typical characteristics of Mb heme Fe(III)/Fe(II) redox couples. Thus, the direct electron transfer rate between Mb and the modified electrode was promoted due to the high conductivity and increased surface area of Au/GR nanocomposite present on electrode surface. Based on the cyclic voltammetric data, the electrochemical parameters of Mb on the modified electrode were calculated. The Mb-modified electrode showed excellent electrocatalytic activities towards the reduction of trichloroacetic acid and H2O2 with wider linear range and lower detection limit. Using GR and Au nanoparticles modified CILE, a new third-generation electrochemical Mb biosensor was constructed with good stability and reproducibility.  相似文献   

17.
《Electroanalysis》2006,18(5):471-477
The precursor film was first formed on the Au electrode surface based on the self‐assembly of L ‐cysteine and the adsorption of gold colloidal nanoparticles (nano‐Au). Layer‐by‐layer (LBL) assembly films of toluidine blue (TB) and nano‐Au were fabricated by alternately immersing the electrode with precursor film into the solution of toluidine blue and gold colloid. Cyclic voltammetry (CV) and quartz crystal microbalance (QCM) were adopted to monitor the regular growth of {TB/Au} bilayer films. The successful assembly of {TB/Au}n films brings a new strategy for electrochemical devices to construct layer‐by‐layer assembly films of nanomaterials and low molecular weight materials. In this article, {TB/Au}n films were used as model films to fabricate a mediated H2O2 biosensor based on horseradish peroxidase, which responded rapidly to H2O2 in the linear range from 1.5×10?7 mol/L to 8.6×10?3 mol/L with a detection limit of 7.0×10?8 mol/L. Morphologies of the final assembly films were characterized with scanning probe microscopy (SPM).  相似文献   

18.
银纳米修饰电极的制备及电化学行为   总被引:7,自引:0,他引:7       下载免费PDF全文
金属纳米粒子由于其小的体积和大的比表面积而具有独特的电子、光学和异相催化特性,是目前表面纳米工程及功能化纳米结构制备的一种理想研究对象[1]。银纳米粒子可广泛应用于催化剂材料、电池的电极材料、低温导热材料和导电材料等,成为近年来人们研究的热点[2,3]。在电化学方面,银纳米粒子具有比其他纳米粒子更为优异的导电性能和电催化性能。因此,研究银纳米粒子修饰电极有重要的应用价值和前景[4]。1实验部分1.1仪器CHI660电化学工作站(USA);TU-1901型双光束紫外可见分光光度计(北京普析通用仪器公司);KQ-100型超声清洗器(昆山市超声…  相似文献   

19.
A novel electrochemical non-enzymatic glucose sensor based on three-dimensional Au/MXene nanocomposites was developed. MXenes were prepared using the mild etched method, and the porous foam of Au nanoparticles was combined with the MXene by means of in situ synthesis. By controlling the mass of MXene in the synthesis process, porous foam with Au nanoparticles was obtained. The three-dimensional foam structure of nanoparticles was confirmed by scanning electron microscopy. Cyclic voltammetry and electrochemical impedance spectroscopy were used to study the electrochemical performance of the Au/MXene nanocomposites. The Au/MXene nanocomposites acted as a fast redox probe for non-enzymatic glucose oxidation and showed good performance, including a high sensitivity of 22.45 μA\begin{document}$\cdot$\end{document}(mmol/L)\begin{document}$^{-1}$\end{document}\begin{document}$\cdot$\end{document}cm\begin{document}$^{-1}$\end{document} and a wide linear range of 1-12 mmol/L. Studies have shown that MXene as a catalyst-supported material is beneficial to enhance the conductivity of electrons and increase the loading rate of the catalyst materials. The foam structure with Au nanoparticles can provide a larger surface area, increase the contact area with the molecule in the catalytic reaction, and enhance the electrochemical reaction signal. In summary, this study shows that Au/MXene nanoparticles have the potential to be used in non-enzymatic glucose sensors.  相似文献   

20.
Sun Z  Li Y  Zhou T  Liu Y  Shi G  Jin L 《Talanta》2008,74(5):1692-1698
In this paper, layer-by-layer (LBL) {MSU/Hb}(n)/PDDA films assembled by alternate adsorption of positively charged hemoglobin (Hb) and negatively charged mesoporous molecular sieves of Al-MSU-S onto a glassy carbon electrode (GCE) were reported. Al-MSU-S was synthesized by the precursor of zeolite Y and ionic liquids 1-hexadecane-3-methylimidazolium bromide (CMIMB) as a template in basic medium. It exhibited larger pore diameter, pore volume and surface area. Direct electrochemical and electrocatalytic properties of Hb in these layer-by-layer films were investigated. A pair of well-defined nearly reversible cyclic voltammetric peaks was observed and the formal potential of the heme Fe(III)/Fe(II) redox couple was found to be -0.295V (vs. SCE). The influences of layer's number and the pH of the external solution to the electron transfer behavior of Hb in {MSU/Hb}(n)/PDDA films were also estimated by cyclic voltammetry and a set of optimized conditions for film fabrication was inferred. The hemoglobin in{MSU/Hb}(n)/PDDA films displayed a good electrocatalytic activity to the reduction of hydrogen peroxide, which had linear current responses from 1.0 x 10(-6) to 1.86 x 10(-4)mol/L with the detection limit of 5.0 x 10(-7)mol/L (S/N=3). The apparent Michaeli-Menten constant (K(m)(app)) was 0.368 mmol/L. Thus, this methodology shows potential application of the preparation of third-generation biosensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号