首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four half-sandwich cobalt complexes, CpCo(2-PyS)2 (2), CpCo(2-PyS)2 · HI (3), CpCo(2-PyS) (4-PyS) (4), (CpCo)2(μ-PhS)2(μ-2-PyS)I (5) [Cp = pentamethylcyclopentadienyl, 2-PyS = 2-pyridinethiolate, 4-PyS = 4-pyridinethiolate, PhS = benzenethiolate] were successfully synthesized by the reactions of 2-pyridinethione, lithium 4-pyridinethiolate and lithium benzenethiolate with CpCo(2-PyS)I (1), respectively. Complexes 2 and 3 have the structures with two 2-pyridinethiolates ligands coordinated to the cobalt atom. Two different pyridinethiolates ligands can be identified in complex 4. The molecular structure of 5 consists of two Cp-Co fragments, which are triply bridged by three sulfur atoms from different ligands. The molecular structures of 3 and 5 were determined by X-ray crystallographic analysis. All the complexes have been well characterized by elemental analysis, NMR and IR spectra.  相似文献   

2.
A 18-electron complex CpIrCl[o-C6H4N(C6H3-Me-p) (CHNC6H3-Me-p)] (Cp = η5-pentamethylcyclopentadienyl) (1a) was obtained by the reaction of the lithium salt of o-C6H4N (C6H3-Me-p)(CHNHC6H3-Me-p) (L1) with [CpIrCl(μ-Cl)]2 in toluene. However, when bulkier ligands (L2 = o-C6H4N(C6H3-Me-p)(CHNHC6H3-i-Me2-2,6), L3 = o-C6H4N(C6H3-Me-p) (CHNHC6H3-i-Pr2-2,6)) were employed in the same reaction, two 16-electron complexes {CpIr[o-C6H4N(C6H3-Me-p)(CHNC6H3-i-Me2-2,6)]}+Cl (2b) and {CpIr[o-C6H4N(C6H3-Me-p)(CHNC6H3-i-Pr2-2,6)]}+Cl (3b) were formed. A 16-electron complex {CpIr [o-C6H4N(C6H3-Me-p) (CHNC6H3-Me-p)]}+SO3 CF3 (1b) bearing L1 could be achieved by the reaction of 1a with AgSO3CF3 in CH3CN solution. The molecular structures of 1a and 2b were determined by X-ray crystallography. Theoretical calculations of all the 18/16-electron species were performed to study their bonding characters and electronic properties. Electron donating effect of Cp and steric effect of anilido-imine ligand were considered as major factors in the formation of coordinative unsaturated complexes 1b, 2b, 3b.  相似文献   

3.
Two hetero-binuclear complexes [CpCoS2C2(B9H10)][Rh(COD)] (2a) and [CpCoSe2C2(B10H10)][Rh(COD)] (2b) [Cp = η5-pentamethylcyclopentadienyl, COD = cyclo-octa-1,5-diene (C8H12)] were synthesized by the reactions of half-sandwich complexes [CpCoE2C2(B10H10)] [E = S (1a), Se (1b)] with low valent transition metal complexes [Rh(COD)(OEt)]2 and [Rh(COD)(OMe)]2. Although the reaction conditions are the same, the structures of two products for dithiolato carborane and diselenolato carborane are different. The cage of the carborane in 2a was opened; However, the carborane cage in 2b was intact. Complexes 2a and 2b have been fully characterized by 1H, 11B NMR and IR spectroscopy, as well as by elemental analyses. The molecular structures of 2a and 2b have been determined by single-crystal X-ray diffraction analyses and strong metal-metal interactions between cobalt and rhodium atoms (2.6260 Å (2a) and 2.7057 Å (2b)) are existent.  相似文献   

4.
N-heterocyclic bis-carbene ligand (bis-NHC) which was derived from 1,1′-diisopropyl-3,3′-ethylenediimidazolium dibromide (L·2HBr) via silver carbene transfer method, reacted with [(η6-p-cymene)RuCl2]2 and [CpMCl2]2 (Cp = η5-C5Me5, M = Ir, Rh) respectively, afforded complexes [(η6-p-cymene)RuCl2]2(L) (1), [CpIrCl2]2(L) (2) and [CpRhCl(L)][CpRhCl3] (3). When [CpIrCl2]2 was treated with 2 equiv AgOTf at first, and then reacted with bis-NHC ligand, [CpIrCl(L)]OTf (4) was obtained. The molecular structures of complexes 1-4 were determined by X-ray single crystal analysis, showing that 1 and 2 adopted bridging coordination mode, 3 and 4 adopted chelating coordination mode. All of these complexes were characterized by 1H, 13C NMR spectroscopy and element analysis.  相似文献   

5.
The binuclear half-sandwich iridium complexes {CpIrCl2}2(μ-2,6(7)-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene) (3) and {CpIr[E2C2(B10H10)]}2(μ-2,6(7)-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene) (E = S(5a), Se(5b)) were prepared from the reaction of [CpIrCl(μ-Cl)]2 or the “pseudo-aromatic” half-sandwich iridium complex CpIr[E2C2(B10H10)] (E = S(4a), Se(4b)) with a tetrathiafulvalene (TTF) derivative 2,6-bis(4-pyridyl)-1,4,5,8-tetrathiafulvalene (2) at room temperature. The complexes (3, 5a and 5b) have been fully characterized by IR and NMR spectroscopy, as well as elemental analysis. And the molecular structures of 2 and 5a were established through X-ray crystallography. It is interesting that infinite tunnels are created by repeating ‘buckled bowl’ molecules of 5a.  相似文献   

6.
Treatment of [Cp∗Ir(ppy)Cl] (Cp∗ = η5-C5Me5, ppyH = 2-(2-pyridyl)phenyl) with Ag(OTf) (OTf− = triflate) in MeOH and MeCN gave the solvento complexes [Cp∗Ir(ppy)(solv)][OTf] (solv = MeOH (1) and MeCN (2)). Complex 1 is capable of catalyzing oxidation and azirdination of styrene with PhIO and PhINTs (Ts = tosyl), respectively. Treatment of 2 with a stoichiometric amount of PhINTs resulted in the insertion of the NTs group into the Ir-C(ppy) bond and formation of [Cp∗Ir(η2-ppy-NTs)(MeCN)][OTf] (3). Treatment of 1 with R2E2 afforded [Cp∗Ir(ppy)(η1-R2E2)][OTf] (E = S (4), Se (5), Te (6)). Reactions of 4 and 5 with Ag(OTf) resulted in cleavage of the E-E bond and insertion of an ER group into the Ir-C(ppy) bond. The crystal structures of complexes 2-6 and [Cp∗Ir(η2-ppy-S-p-tol)(H2O)][OTf]2 have been determined.  相似文献   

7.
A new route was used to synthesize half-sandwich rhodium complexes containing both N-heterocyclic carbenes (NHC) and carborane ligands. The rhodium carbene complexes CpRh(L)[S2C2(B10H10)] (Cp = pentamethylcyclopentadienyl, L = 1,3-dimethylimidazolin-2-ylidene; 4) can be obtained from the reaction of CpRh(L)Cl2 (2) with Li2S2C2(B10H10) or from the reaction of CpRh[S2C2(B10H10)] (3) with silver-NHC complex prepared by direct reaction of an imidazolium precursor and Ag2O. Complexes 2 and 4 were characterized by IR, NMR spectroscopy, element analysis and X-ray structure analyses.  相似文献   

8.
The 16-electron half-sandwich complexes CpRh[E2C2(B10H10)] (E = S, 1a; Se, 1b) react with [Ru(COD)Cl2]x under different conditions to give different types of heterometallic complexes. When the reactions were carried out in THF for 24 h, the binuclear Rh/Ru complexes [CpRh(μ-Cl)2(COD)Ru][E2C2(B10H10)] (E = S, 2a; Se, 2b) bridged by two Cl atoms and the binuclear Rh/Rh complexes (CpRh)2[E2C2(B10H10)] (E = S, 3a; Se, 3b) with direct Rh-Rh bond can be isolated in moderate yields. [Ru(COD)Cl2] fragments in 2a and 2b have inserted into the Rh-E bond. If the [Ru(COD)Cl2]x was reacted with 1a in the presence of K2CO3 in methanol solution, the product [CpRh(COD)]Ru[S2C2(B10H10]] (4a), K[(μ-Cl)(μ-OCH3)Ru(COD)]4 (5a) and 3a were obtained. The B(3)-H activation in complex 4a was found. However, when the reaction between 1b and [Ru(COD)Cl2]x was carried out in excessive NaHCO3, the carborane cage opened products {CpRh[S2C2(B9H10)]}Ru(COD) (6b), {CpRh[S2C2(B9H9)]}Ru(COD)(OCH3) (7b) and 3b were obtained. All complexes were fully characterized by their IR, 1H NMR and elemental analyses. The molecular structures of 2a, 2b, 3b, 4a, 5a, and 7b have been determined by X-ray crystallography.  相似文献   

9.
A structural study of lanthanide complexes with the deprotonated form of the monobracchial lariat ether N-2-salicylaldiminatobenzyl-aza-18-crown-6 (L4) (Ln = La(III)–Tb(III)) is presented. Attempts to isolate complexes of the heaviest members of the lanthanide series were unsuccessful. The X-ray crystal structures of [Pr(L4)(H2O)](ClO4)2 · H2O · C3H8O and [Sm(L4)(H2O)](ClO4)2 · C3H8O show the metal ion being bound to the eight donor atoms of the ligand backbone. Coordination number nine is completed by the oxygen atom of an inner-sphere water molecule. Two different conformations of the crown moiety (labelled as A and B) are observed in the solid state structure of the Pr(III) complex, while for the Sm(III) complex only conformation A is observed. The complexes were also characterized by means of theoretical calculations performed in vacuo at the HF level, by using the 3-21G basis set for the ligand atoms and a 46 + 4fn effective core potential for lanthanides. The optimized geometries of the Pr(III) and Sm(III) complexes show an excellent agreement with the experimental structures obtained from X-ray diffraction studies. The calculated relative energies of the A and B conformations for the different [Ln(L4)(H2O)]2+ complexes (Ln = La, Pr, Sm, Ho or Lu) indicate a progressive stabilization of the A conformation with respect to the B one upon decreasing the ionic radius of the Ln(III) ion. For the [Ln(L4)(H2O)]2+ systems, most of the calculated bond distances between the metal ion and the coordinated donor atoms decrease along the lanthanide series, as usually observed for Ln(III) complexes. However, our ab initio calculations provide geometries in which the Ln–O(5) bond distance [O(5) is an oxygen atom of the crown moiety] increases across the lanthanide series from Sm(III) to Lu(III).  相似文献   

10.
Several (azido)iridium(III) complexes having a pentamethylcyclopentadienyl (Cp∗) group, [Cp∗Ir(N3)2(Ph2Ppy-κP)] (1: Ph2Ppy = 2-diphenylphosphinopyridine), [Cp∗Ir(N3)(Ph2Ppy-κP,κN)]CF3SO3 (2), [Cp∗Ir(N3)(dmpm)]PF6 (3: dmpm = bis(dimethylphosphino)methane), [Cp∗Ir(N3)(Ph2Pqn)]PF6··CH3OH (4··CH3OH: Ph2Pqn = 8-diphenylphosphinoquinoline), and [Cp∗Ir(N3)(pybim)] (5: Hpybim = 2-(2-pyridyl)benzimidazole) have been prepared and their crystal structures have been analyzed by X-ray diffraction. In complex 1, the Ph2Ppy ligand is only coordinated via the P atom (-κP), while in 2 it acts as a bidentate ligand through the P and N atoms (-κP,κN) to form a four-membered chelate ring. Comparing the structural parameters of the chelate ring in 2 with those of a similar five-membered chelate ring formed by Ph2Pqn in 4, it became apparent that the angular distortion in the Ph2Ppy-κP,κN ring was remarkable, although the Ir–P and Ir–N bonds in the Ph2Ppy-κP,κN ring were not elongated very much from the corresponding bonds in the Ph2Pqn-κP,κN ring. In the pybim complex 5, the five-membered chelate ring was coplanar with the pyridine and benzimidazolyl rings. With the related (azido)iridium(III) complexes analyzed previously, comparison of the structural parameters of the Ir–N3 moiety in [Cp∗IrIII(N3)(L–L′)]+/0 complexes reveals an anomalous feature of the 2,2′-bipyridyl (bpy) complex, [Cp∗Ir(N3)(bpy)]PF6.  相似文献   

11.
Reaction of 3,4-dimethylphospholylthallium (Tl-1) with [CpMCl2]2 (M = Rh, Ir) leads to the formation of the dimeric species [(CpM)2(Me2C4H2P)3]+2 and 3 with bridging μ-η11-phospholyl ligands. The phosphametallocenium sandwich complexes [CpM(Me2C4(SiMe3)2P)]+7 (M = Rh) and 8 (M = Ir) could be obtained from the reaction of [CpMCl2]2 and the 2,5-bis(trimethylsilyl)-1-trimethylstannylphosphole 6, with the bulky trimethylsilyl groups preventing the phosphole from η1- and enforcing a η5-coordination. The structures of phospharhodocenium cation 7 and a byproduct 9 containing a phosphairidocenium moiety could be determined by X-ray diffraction.  相似文献   

12.
The one-pot reaction of [CpMo(NO)(CO)2] with elemental sulfur and dimethyl acetylenedicarboxylate (C2Z2 (Z = COOMe)) gave the [2+2] cycloadduct of the mononuclear molybdenum dithiolene complex [CpMo(NO)(S2C2Z2)(C2Z2)] (1), and some binuclear complexes:[CpMo(NO)(S2C2Z2)]2 (2), [Cp2Mo2(NO)2S2(S2C2Z2)] (3) and [CpMo(NO)S2]2 (4).The reaction of [CpMo(NO)(Cl)(μ-Cl)]2 with OC{S2C2(COOMe)2} in the presence of sodium methoxide also produced complex 2 and the paramagnetic CpMo bisdithiolene complex [CpMo(S2C2Z2)2] (5, Z = COOMe).The structures of complexes 1-5 were determined by X-ray crystal structure analysis.The nitrosyl ligands of complexes 1-4 showed a linear coordination to the molybdenum center (the Mo-N-O bond angles = 169-174°), and their N-O bond lengths were 1.17-1.20 Å.In the binuclear complexes 2-4, two nitrosyl ligands were placed at cis-position.Complexes 1 and 2 were characterized by cyclic voltammetry and spectroelectrochemistry (visible and IR). The electrochemical reduction of the dimeric complex 2 formed the monomeric dithiolene complex[CpMo(NO)(S2C2Z2)] (X) whose lifetime was several minutes. When the anion X was electrochemically oxidized, the coordinatively unsaturated species X was generated, but it was immediately dimerized to afford the original dimeric complex 2. The reduction of the complex 1 included the elimination of the bridged DMAD moiety (C2Z2) to give the anion X.  相似文献   

13.
The synthesis, characterization and chemistry of novel η3-allyl metal complexes (M = Ir, Rh) are described. The structures of compounds (C5Me4H)Ir(PPh3)Cl2 (1), (C5Me4H)Ir(PPh3)(η3-1-methylallyl)Br (3a), (C5Me4H)Ir(η4-1,3,5-hexatriene) (8), and (C5Me5)Rh(η3-1-ethylallyl)Br (5d) have been determined by X-ray crystallography. Structural comparisons among these complexes are discussed. It is found that the neutral metal allylic complex [CpIrCl(η3-methylallyl)] (5) ionizes in polar solvents to give [CpIr(η3-methylallyl)]+Cl (6) and reaches equilibrium (5 ? 6) at room temperature. Addition of tertiary phosphine ligands to neutral complexes such as [CpIr(η3-methylallyl)Cl], results in the formation of stable ionic phosphine adducts. Factors such as solvent, length of carbon chain, temperature and light are discussed with respect to the formation, stability and structure of the allyl complexes.  相似文献   

14.
Complexes M(CCCSiMe3)(CO)2Tp′ (Tp′ = Tp [HB(pz)3], M = Mo 2, W 4; Tp′ = Tp [HB(dmpz)3], M = Mo 3) are obtained from M(CCCSiMe3)(O2CCF3)(CO)2(tmeda) (1) and K[Tp′].Reactions of 2 or 4 with AuCl(PPh3)/K2CO3 in MeOH afforded M{CCCAu(PPh3)}(CO)2Tp′ (M = Mo 5, W 6) containing C3 chains linking the Group 6 metal and gold centres.In turn, the gold complexes react with Co33-CBr)(μ-dppm)(CO)7 to give the C4-bridged {Tp(OC)2M}CCCC{Co3(μ-dppm)(CO)7} (M = Mo 7, W 8), while Mo(CBr)(CO)2Tp and Co33-C(CC)2Au(PPh3)}(μ-dppm)(CO)7 give {Tp(OC)2Mo}C(CC)2C{Co3(μ-dppm)(CO)7} (9) via a phosphine-gold(I) halide elimination reaction. The C3 complexes Tp′(OC)2MCCCRu(dppe)Cp (Tp′ = Tp, M = Mo 10, W 11; Tp′ = Tp, M = Mo 12) were obtained from 2-4 and RuCl(dppe)Cp via KF-induced metalla-desilylation reactions. Reactions between Mo(CBr)(CO)2Tp and Ru{(CC)nAu(PPh3)}(dppe)Cp (n = 2, 3) afforded {Tp(OC)2Mo}C(CC)n{Ru(dppe)Cp} (n = 2 13, 3 14), containing C5 and C7 chains, respectively. Single-crystal X-ray structure determinations of 1, 2, 7, 8, 9 and 12 are reported.  相似文献   

15.
Coordinatively unsaturated rhodium and iridium complexes having a bulky thiolate, [Cp∗M(PMe3)(SDmp)](BArF4) (1a: M = Rh; 1b: M = Ir; Dmp = 2,6-(mesityl)2C6H3, ArF = 3,5-(CF3)2C6H3), catalyzed the hydrogenation of benzaldehyde, N-benzylideneaniline, and cyclohexanone, under 1 atm of H2 at low temperatures. In these catalytic reactions, the M-H/S-H complexes [Cp∗M(PMe3)(H)(HSDmp)](BArF4) (2a: M = Rh; 2b: M = Ir) generated via H2 heterolysis by 1a or 1b were suggested to transfer both M-H hydride and S-H proton to substrates. The catalytic reactions were terminated by the dissociation of H-SDmp from the metal centers of 2a and 2b that occurs at ambient temperature under H2 atmosphere.  相似文献   

16.
The Rh(III)-thiolate complex [TpRh(SPh)2(MeCN)] (2; Tp = hydrotris(3,5-dimethylpyrazolyl)borate) readily undergoes substitution of MeCN by XyNC (Xy = 2,6-dimethylphenyl) to give the isocyanide complex [TpRh(SPh)2(XyNC)] (3), whereas reaction of 2 with terminal alkynes results in the formation of the rhodathiacyclobutene complex [TpRh(SPh){η2-CHCR(SPh)}] (4; R = aryl, alkyl). Molecular structures of 3 and 4 (R = CH2Ph) have been determined by single crystal X-ray diffraction. Complex 2 as well as [TpRh(cyclooctene)(MeCN)] have been found to catalyze regioselective addition of benzenethiol to terminal alkynes RCCH at 50 °C to give R(PhS)CCH2 in moderate to high yields. The above products are selectively formed when R = CH2Ph and n-C6H13, while cis-RCHCHSPh and RC(SPh)2CH3 are also obtained as by-products when R = p-MeOC6H4. Catalytic cycle involving 2 and 4 is proposed based on the mechanistic studies using NMR measurement.  相似文献   

17.
Reactions of a sulfido- and thiolato-bridged diiridium complex [(CpIr)2(μ-S)(μ-SCH2CH2CN)2] (Cp = η5-C5Me5) with [(CpMCl)2(μ-Cl)2] (M = Ir, Rh) afforded the sulfido- and thiolato-bridged trinuclear clusters [(CpM)(CpIr)23-S)(μ2-SCH2CH2CN)22-Cl)]Cl (4: M = Ir, 5: M = Rh). Upon treatment with XyNC (Xy = 2,6-Me2C6H3) in the presence of KPF6 at 60 °C, 4 was converted into a mixture of a mononuclear XyNC complex [CpIr(SCH2CH2CN)(CNXy)2][PF6] (6) and a dinuclear XyNC complex [{CpIr(CNXy)}2(μ-S)(μ-SCH2CH2CN)][PF6] (7). On the other hand, reactions of 4 and 5 with methyl propiolate in the presence of KPF6 at 60 °C resulted in the formation of a cyclic trimer of the alkyne 1,3,5-C6H3(COOMe)3 as the sole detectable organic product. The reactions proceeded catalytically with retention of the cluster cores of 4 and 5, whereby the activity of the former was much higher than that of the latter.  相似文献   

18.
Reaction of [Ru(Cp)(CH3CN)3](PF6) with P(o-tolyl)3 affords [Ru(Cp){(η6-o-tolyl)P(o-tolyl)2}](PF6) (4) in which the P-atom is not coordinated to the metal. The solid-state structure of 4 has been determined. A related reaction with P(p-tolyl)3 reveals a small quantity [Ru(Cp){(η6-p-tolyl)P(o-tolyl)2}](PF6), in solution, but mostly the expected bis-phosphine complex. Reaction of the Ru(IV) dication, [Ru(Cp)(η3-PhCHCHCH2)(DMF)2](PF6)2, with P(o-tolyl)3 gives a mixture of the phosphonium salt, C6H5CHCHCH2P(o-tolyl)3 (9) and the dication [Ru(Cp) (η6-C6H5CHCHCH2P(o-tolyl)3)](PF6)2 (10). Salt 9 forms via attack of the P-atom on the allyl ligand. The latter product results from complexation of 9 via the phenyl group of the former allyl ligand. It would seem that the sterically demanding P(o-tolyl)3 ligand is not readily compatible with the Ru(Cp) fragment, in either the +2 or +4 oxidation state. Detailed NMR studies are reported.  相似文献   

19.
Chalcogen-stabilized dimolybdaboranes 3-5 (3: [(CpMo)2B4H5Se(Ph)], 4: [(CpMo)2B4H3Se2(SeCH2Ph)] and 5: [(CpMo)2B3H6(BSR)(μ-η1-SR)] (R = 2,6-(tBu)2-C6H2OH)) have been isolated from the mild pyrolysis of dichalcogenide ligands, RE-E‘R (R = Ph: E = S, E‘ = Se; R = CH2Ph, [2,6-(tBu)2-C6H2OH]: E = E‘ = Se, S) and [(CpMo)2B4H8], 2, an intermediate generated from the reaction of [CpMoCl4] (1) (Cp = η5-C5Me5), with [LiBH4.thf]. The geometry of [(CpMo)2B4H5Se(Ph)] is similar to that of [(CpMo)2B5H9], in which one BH3 unit on the open face is replaced by a triple bridged selenium atom. All the compounds have been characterized in solution by 1H, 11B, 13C NMR and IR spectroscopy and elemental analysis. The structural types were unequivocally established by X-ray crystallographic analysis of compounds 3-5.  相似文献   

20.
Eleven borosiloxane [R′Si(ORBO)3SiR′] compounds where R′ = But and R = Ph (1), 4-PhC6H4 (2), 4-ButC6H4 (3), 3-NO2C6H4 (4), 4-CH(O)C6H4 (5), CpFeC5H4 (6), 4-C(O)CH3C6H4 (7), 4-ClC6H4 (8), 2,4-F2C6H3 (9), and R′ = cyclo-C6H11 and R = Ph (10), and 4-BrC6H4 (11) have been synthesized and characterized by spectroscopic (IR, NMR), mass spectrometric and, for compounds where R′ = But and R = 4-PhC6H4 (2), 4-ButC6H4 (3), 3-NO2C6H4 (4), CpFeC5H4 (6) and 2,4-F2C6H3 (9), X-ray diffraction studies. These compounds contain trigonal planar RBO2 and tetrahedral R′SiO3 units located around 11-atom “spherical” Si2O6B3 cores. The dimensions of the Si2O6B3 cores in compounds 2, 3, 4, 6 and 9 are remarkably similar. The reaction between [ButSi{O(PhB)O}3SiBut] (1), and excess pyridine yields the 1:1 adduct [ButSi{O(PhB)O}SiBut]. NC5H5 (12) while the reaction between 1 and N,N,N′,N′-tetramethylethylenediamine in equimolar amounts affords a 2:1 borosiloxane:amine adduct [ButSi{O(PhB)O}3SiBut]2 · Me2NCH2CH2NMe2 (13). Compounds 12 and 13 were characterised with IR and (1H, 13C and11B) NMR spectroscopies and the structure of the pyridine complex 12 was determined with X-ray techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号