首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reaction of 3-(2-pyridylmethyl)indenyl lithium (1) with LnI2(THF)2 (Ln = Sm, Yb) in THF produced the divalent organolanthanides (C5H4NCH2C9H6)2LnII(THF) (Ln = Sm (2), Yb (3)) in high yield. 1 reacts with LnCl3 (Ln = Nd, Sm, Yb) in THF to give bis(3-(2-pyridylmethyl)indenyl) lanthanide chlorides (C5H4NCH2C9H6)2LnIIICl (Ln = Nd (4), Sm (5)) and the unexpected divalent lanthanides 3 (Ln = Yb). Complexes 2-5 show more stable in air than the non-functionalized analogues. X-ray structural analyses of 2-4 were performed. 2 and 3 belong to the high symmetrical space group (Cmcm) with the same structures, they are THF-solvated 9-coordinate monomeric in the solid state, while 4 is an unsolvated 9-coordinate monomer with a trans arrangement of both the sidearms and indenyl rings in the solid state. Additionally, 2 and 3 show moderate polymerization activities for ε-caprolactone (CL).  相似文献   

2.
Reaction of (CH3C5H4)2LnCl(THF) with NaNHAr in a 1:1 molar ratio in THF afforded the amide complexes (CH3C5H4)2LnNHAr(THF) [(Ar = 2,6-Me2C6H3, Ln = Yb (I), Y (III); Ar = 2,6-iPr2C6H3, Ln = Yb (II)]. X-ray crystal structure determination revealed that complexes I-III are isostructural. The central metal in each complex coordinated to two methylcyclopentadienyl groups, one amide group and one oxygen atom from THF to form a distorted tetrahedron. Complexes I-III and a known complex (CH3C5H4)2YbNiPr2(THF) IV all can serve as the catalysts for addition of amines to nitriles to monosubstituted N-arylamidines. The activity depended on the central metals and amide groups, and the active sequence follows the trend IV ≈ III < I < II.  相似文献   

3.
Treatment of (C5H4SiMe2tBu)2LnR with 1 equiv of elemental sulfur in toluene at ambient temperature gives dimeric complexes [(C5H4SiMe2tBu)2Ln(μ-SR)]2 [R = Me, Ln = Yb (1), Er (2), Dy (3), Y (4); R = nBu, Ln = Yb (5), Dy (6)]. All these complexes have been characterized by elemental analysis, IR and mass spectroscopies. The structures of complexes 1, 3, 5 and 6 are also determined through X-ray single crystal diffraction analysis, indicating that only one sulfur atom from elemental sulfur inserts into Ln–C σ-bond.  相似文献   

4.
The synthesis of lanthanide hydroxo complexes stabilized by a carbon-bridged bis(phenolate) ligand 2,2’-methylene-bis(6-tert-butyl-4-methylphenoxo) (MBMP2−) was described, and their reactivity toward phenyl isocyanate was explored. Reactions of (MBMP)Ln(C5H5)(THF)2 with a molar equiv. of water in THF at −78 °C afforded the bis(phenolate) lanthanide hydroxides as dimers [{(MBMP)Ln(μ-OH)(THF)2}2] [Ln = Nd (1), Yb (2)] in high yields. Complexes 1 and 2 reacted with phenyl isocyanate in THF, after workup, to give the desired O−H addition products, [(MBMP)Ln(μ-η12-O2CNHPh)(THF)2]2 [Ln = Nd (3), Yb (4)] in excellent isolated yields. These complexes were well characterized, and the molecular structures of complexes 2 to 4 were determined by X-ray crystallography. The ytterbium atom in complex 2 is coordinated to six oxygen atoms to form a distorted octahedral geometry, whereas each metal center in complexes 3 and 4 is seven-coordinated, and the coordination geometry can be best described as a distorted pentagonal bipyramid.  相似文献   

5.
Two series of new organolanthanide(II) complexes with general formula {η51-[1-R-3-(2-C5H4NCH2)C9H5]}2Ln(II) (R = H-, Ln = Yb (3), Eu (4); R = Me3Si-, Ln = Yb (5), Eu (6)), and {η51-[1-R-3-(3-C5H4NCH2)C9H5]}2Ln(II) (R = H-, Ln = Yb (9), Eu (10); R = Me3Si-, Ln = Yb (11), Eu (12)) were synthesized by silylamine elimination with one-electron reductive reactions of lanthanide(III) amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3 (Ln = Yb, Eu) with 2 equiv. 1-R-3-(2-C5H4NCH2)C9H6 (R = H (1), Me3Si- (2)) or 1-R-3-(3-C5H4NCH2)C9H6 (R = H (7), Me3Si- (8)) in good yields. All the complexes were fully characterized by elemental analyses and spectroscopic methods. Complexes 3 and 5 were additionally characterized by single-crystal X-ray diffraction study. The catalytic activities of the complexes for MMA polymerization were examined. It was found that complexes with 3-pyridylmethyl substituent on the indenyl ligands could function as single-component MMA polymerization catalysts with good activities, while the complexes with 2-pyridylmethyl substituent on the indenyl ligands cannot catalyze MMA polymerization. The temperatures and solvents effect on the MMA polymerization have also been examined.  相似文献   

6.
Reactions of neutral amino phosphine compounds HL1-3 with rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2, afforded a new family of organolanthanide complexes, the molecular structures of which are strongly dependent on the ligand framework. Alkane elimination reactions between 2-(CH3NH)-C6H4P(Ph)2 (HL1) and Lu(CH2SiMe3)3(THF)2 at room temperature for 3 h generated mono(alkyl) complex (L1)2Lu(CH2SiMe3)(THF) (1). Similarly, treatment of 2-(C6H5CH2NH)-C6H4P(Ph)2 (HL2) with Lu(CH2SiMe3)3(THF)2 afforded (L2)2Lu(CH2SiMe3)(THF) (2), selectively, which gradually deproportionated to a homoleptic complex (L2)3Lu (3) at room temperature within a week. Strikingly, under the same condition, 2-(2,6-Me2C6H3NH)-C6H4P(Ph)2 (HL3) swiftly reacted with Ln(CH2SiMe3)3(THF)2 at room temperature for 3 h to yield the corresponding lanthanide bis(alkyl) complexes L3Ln(CH2SiMe3)2(THF)n (4a: Ln = Y, n = 2; 4b: Ln = Sc, n = 1; 4c: Ln = Lu, n = 1; 4d: Ln = Yb, n = 1; 4e: Ln = Tm, n = 1) in high yields. All complexes have been well defined and the molecular structures of complexes 1, 2, 3 and 4b-e were confirmed by X-ray diffraction analysis. The scandium bis(alkyl) complex activated by AlEt3 and [Ph3C][B(C6F5)4], was able to catalyze the polymerization of ethylene to afford linear polyethylene.  相似文献   

7.
Two series of new divalent organolanthanide complexes with the general formula [η51-{1-R-3-(C5H9OCH2)C9H5}]2LnII (R = H, Ln = Yb (3); R = Me3Si, Ln = Yb (4); R = H, Ln = Eu (5); R = Me3Si, Ln = Eu (6)) were prepared by reactions of 2 equiv. of 1-R-3-(C5H9OCH2)C9H6 (R = H (1), R = Me3Si (2)) with the lanthanide(III) amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3 (Ln = Yb, Eu) via a one-electron reductive elimination process. Recrystallization of 6 from n-hexane afforded [η51-(C5H9OCH2C9H5SiMe3)]2EuII · (C6H14)0.5 (7). All compounds were fully characterized by elemental analyses, and spectroscopic methods. The structures of complexes 4 and 7 were additionally determined by single-crystal X-ray analyses. The catalytic activity of the complexes on methyl methacrylate and ε-caprolactone polymerization was studied, and the temperatures, substituents on the indenyl ring, and solvents effects on the catalytic activity of the complexes were examined.  相似文献   

8.
Alkane elimination reactions of rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with the multidentate ligands HL1-4, afforded a series of new rare earth metal complexes. Yttrium complex 1 supported by flexible amino-imino phenoxide ligand HL1 was isolated as homoleptic product. In the reaction of rigid phosphino-imino phenoxide ligand HL2 with equimolar Ln(CH2SiMe3)3(THF)2, HL2 was deprotonated by the metal alkyl and its imino CN group was reduced to C-N by intramolecular alkylation, generating THF-solvated mono-alkyl complexes (2a: Ln = Y; 2b: Ln = Lu). The di-ligand chelated yttrium complex 3 without alkyl moiety was isolated when the molar ratio of HL2 to Y(CH2SiMe3)3(THF)2 increased to 2:1. Reaction of steric phosphino β-ketoiminato ligand HL3 with equimolar Ln(CH2SiMe3)3(THF)2 afforded di-ligated mono-alkyl complexes (4a: Ln = Y; 4b: Ln = Lu) without occurrence of intramolecular alkylation or formation of homoleptic product. Treatment of tetradentate methoxy-amino phenol HL4 with Y(CH2SiMe3)3(THF)2 afforded a monomeric yttrium bis-alkyl complex of THF-free. The resultant complexes were characterized by IR, NMR spectrum and X-ray diffraction analyses. All alkyl complexes exhibited high activity toward the ring-opening polymerization of l-lactide to give isotactic polylactide with controllable molecular weight and narrow to moderate polydispersity.  相似文献   

9.
A series of new organolanthanide(II) complexes with furfuryl- and tetrahydrofurfuryl-functionalized indenyl ligands were synthesized via one-electron reductive elimination reaction. Treatments of [(Me3Si)2N]3LnIII(μ-Cl)Li(THF)3 (Ln = Yb, Eu) with 2 equiv. of C4H7OCH2C9H7 (1) or C4H3OCH2C9H7 (2), respectively in toluene at moderate high temperatures produced, after workup, the corresponding organolanthanide(II) complexes with formula [η51-(C4H7OCH2C9H6)]2LnII (Ln = Yb (5), Ln = Eu (6)) and [η51-(C4H3OCH2C9H6)]2LnII (Ln = Yb (7), Ln = Eu (8)) in reasonable to good yields. Treatments of [(Me3Si)2N]3LnIII(μ-Cl)Li(THF)3 (Ln = Yb, Eu) with 2 equiv. of C4H7OCH2C9H6SiMe3 (3) or C4H3OCH2C9H6SiMe3 (4), respectively, in toluene at moderate high temperatures afforded, after workup, the corresponding organolanthanide(II) complexes with formula [η51-(C4H7OCH2C9H5SiMe3)]2LnII (Ln = Yb (9), Ln = Eu (10)) and[η51-(C4H3OCH2C9H5SiMe3)]2LnII (Ln = Yb (11), Ln = Eu (12)) in good to high yields. All the compounds were fully characterized by spectroscopic methods and elemental analyses. The structure of complex 9 was additionally determined by single-crystal X-ray analyses. Studies on the catalytic activities of complexes showed that the complexes having silyl group functionalized indenyl ligands have high catalytic activities on ε-caprolactone polymerization. The temperatures, substituted groups on the indenyl ligands of the complexes, and solvents effects on the catalytic activities of the complexes were examined.  相似文献   

10.
[Cp2Ln(μ-OH)(THF)]2 react with 2 equiv of CyNCNCy (Cy = cyclohexyl) to form [Cp2Ln(μ-OC(NHCy)NCy)]2 (Ln = Er (1-Er), Y (1-Y)), while treatment of [Cp2Ln(μ-OH)]23-O)LnCp(THF) with CyNCNCy affords the addition/rearrangement products [Cp2Ln(μ3-O)(μ-OC(NHCy)NCy)LnCp]2 (Ln = Yb (3-Yb), Er (3-Er)). Compounds [(Cp2Ln)23-CO3)(THF)]2 (Ln = Yb (4-Yb), Er (4-Er)) can be obtained by treatment of [Cp2Ln(μ-OH)(THF)]2 with CO2 immediately followed by the reaction with the corresponding Cp3Ln. Complexes 1-4 were characterized by elemental analysis, spectroscopic properties and X-ray single crystal diffraction analysis.  相似文献   

11.
A family of tantalum compounds supported by the triaryloxide [R-L]3− ligands are reported [H3(R-L) = 2,6-bis(4-methyl-6-R-salicyl)-4-tert-butylphenol, where R = Me or tBu]. The reaction of H3[Me-L] with TaCl5 in toluene gave [(Me-L)TaCl2]2 (1). The [tBu-L] analogue [(tBu-L)TaCl2]2 (2) was synthesized via treatment of TaCl5 with Li3[tBu-L]. A THF solution of LiBHEt3 was added to 1 in toluene to provide [(Me-L)TaCl(THF)]2 (3), while treatment of 2 with 2 equiv of LiBHEt3 or potassium in toluene followed by recrystallization from DME resulted in formation of [M(DME)3][{(tBu-L)TaCl}2(μ-Cl)] [M = Li (4a), K (4b)]. When the amount of MBHEt3 (M = Li, Na, K) was increased to 5 equiv, the analogous reactions in toluene afforded [{(bit-tBu-L)Ta}2(μ-H)3M] [M = Li(THF)2 (5a), Na(DME)2 (5b), K(DME)2 (5c)]. During the course of the reaction, the methylene CH activation of the ligand took place. Dissolution of 5a in DME produced [{(bit-tBu-L)Ta}2(μ-H)3Li(DME)2] (6), indicating that the coordinated THF molecules are labile. When the 2/LiBHEt3 reaction was carried out in THF, the ring opening of THF occurred to yield [(tBu-L)Ta(OBun)2]2 (7) along with a trace amount of [Li(THF)4][{(tBu-L)TaCl}2(μ-OBun)] (8). Treatment of 2 with potassium hydride in DME yielded [{(tBu-L)TaCl2K(DME)2}2(μ-OCH2CH2O)] (9), in which the ethane-1,2-diolate ligand arose from partial C-O bond rupture of DME. The X-ray crystal structures of 2, 3, 4, 5a, 6, 7, and 9 are described.  相似文献   

12.
The reaction between BaI2 · 2H2O and NaHFIP [HFIP = OCH(CF3)2] in a 1:1 stoichiometry gave the heterometallic compound NaBaI2(HFIP)(H2O)(THF)0.5 (1). Attempts to recrystallize 1 in the presence of N- or O-donor ligands lead to redistribution reactions. Barium iodide adducts such as BaI2(DME)3 (2), trans-BaI2(DME)(triglyme) (3) and cis-BaI2(DME)(tetraglyme) (4) were isolated with DME as solvent. A similar behavior was observed for the reaction between BaI2 · 2H2O and NaTFA (TFA = O2CCF3) in a 1:1 stoichiometry in THF, and [Ba(tetraglyme)2]I2 · C7H8 (6) was isolated in the presence of excess tetraglyme. All compounds have been characterized by elemental analysis, IR and 1H NMR as well as single crystal X-ray studies for 3, 4 and 6. Compounds 3 and 4 are covalent adducts with eight- and nine-coordinate barium, respectively. Compound 6 is an ionic compound where two tetraglyme ligands wrap the 10-coordinate barium cation in a helical fashion. The presence of DME actually allows the coordination number of barium in the mixed-ligand adducts 3 and 4 to be tuned. The average Ba–O bond lengths (2.80 for 3 to 2.87 Å for 6) reflect the coordination number of the metal. The same observation is valid for the average Ba–I bond distance, 3.442 for 3 vs. 3.536 Å for 4.  相似文献   

13.
Two series of new organolanthanide(II) complexes with tetrahydro-2H-pyranyl- or N-piperidineethyl-functionalized fluorenyl ligands were synthesized via one-electron reductive elimination reaction. Treatments of [(Me3Si)2N]3LnIII(μ-Cl)Li(THF)3 with 2 equiv. of C5H9OCH2C13H9 (1) or C5H10NCH2CH2C13H9 (2), respectively, in toluene at about 80 °C produced, after workup, the corresponding organolanthanide(II) complexes with formula [η51-C5H9OCH2C13H8]2LnII (Ln = Yb (3), Ln = Eu (4)) and [η51-C5H10NCH2CH2C13H8]2LnII (Ln = Yb (5), Ln = Eu (6)) in good yields. All the compounds were fully characterized by spectroscopic methods and elemental analyses. The structures of complexes 3, 4, and 6 were additionally determined by single-crystal X-ray analyses. It represents the first example of solvent-free organolanthanide(II) complexes with fluorenyl ligands. The catalytic properties of the organolanthanide(II) complexes on the polymerization of ε-caprolactone and methyl methacrylate have been studied. The temperatures, solvents and coordination effects on the catalytic activities of the complexes were examined.  相似文献   

14.
Four 3d–4f heterometallic coordination polymers, [Cu3(IDA)6Ln2] · n(H2O) [IDA =  iminodiacetate dianion; Ln = Gd, n = 3 (1); Ln = Nd, n = 6 (2); Ln = Sm, n = 6 (3)] and [Cu(Cl)(NTA)Sm(H2O)6] · (ClO4) · (H2O) (4) [NTA = nitrilotriacetate trianion], have heen synthesized and characterized by single crystal X-ray diffraction analysis. Complexes 13 are isomorphous, showing a 3D coordination framework having tubular channels filled by lattice water molecules running parallel to the c axis. Whereas complex 4 is a 1D polymer of alternating copper and samarium ions connected by NTA, and the chains get involved in H-bonding interactions resulting in a 3D network. A low temperature magnetic study reveals ferromagnetic interactions for complex 1. Thermogravimetric and X-ray powder diffraction analyses of 1, 2 and 3 show that the covalently bonded 3D network remains almost unaffected after deaquation.  相似文献   

15.
The new polynuclear heterometal alkoxide clusters Ln2Na8(OCH2CF3)14(THF)6 (Ln = Sm 1, Y 2, Yb 3) have been synthesized by the reaction of anhydrous LnCl3 with 7 equiv. of NaOCH2CF3 in 68–75% yields. Crystal structural analysis revealed clusters 13 are isomorphous composed of two cubanes and a double open cubane, with one face of an Ln1Na2O4 open cubane capped by an additional Ln1O2 layer. Clusters 13 show extremely high activity for the polymerization of ε-caprolactone (ε-CL) and trimethylene carbonate (TMC). The reactivity is much higher than those found for the monometallic alkoxides lanthanide complexes previously reported. The dependence of catalytic activity on lanthanide metals is observed: Yb ≈ Y < Sm for ε-CL and Yb < Y < Sm for TMC. The polymers obtained with these clusters all show a unimodal molecular weight distribution with moderate molecular weight distributions (Mw/Mn = 1.4–1.7), indicating that clusters 13 can really be used as single-component catalysts. The bimetallic cooperation and the coordination–insertion mechanism were proposed.  相似文献   

16.
A series of homoleptic lanthanide guanidinate (guan)3Ln · ((C2H5)2O)n (Ln=Yb, n=1 guan=(CyN)2CNiPr2, (1); Ln=Nd, n=0, guan=(CyN)2CNiPr2, (2); (iPrN)2CNiPr2, (3); (iPrN)2CN(CH2)5, (4)); (iPr=isopropyl, Cy=Cyclohexyl) were synthesized by the reaction of THF solution of lithium guanidinate with anhydrous lanthanide trichlorides in THF in 3:1 molar ratio. The molecular structures of 2 and 3 were determined to be monomeric in solid state with a six coordinate lanthanide metal ligated by six nitrogens of three guanidinate groups. All the complexes exhibited extremely high activity for the ring-opening polymerization of ε-caprolactone and the polymerization gave the polymers with high molecular weights. The different substituents at guanidino ligands have great effect on the catalytic activity. The mechanism of the polymerization was presented.  相似文献   

17.
Condensation of (S)-2-amino-2′-hydroxy-1,1′-binaphthyl with 1 equiv. of pyrrole-2-carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives (S)-2-(pyrrol-2-ylmethyleneamino)-2′-hydroxy-1,1′-binaphthyl (1H2) in 90% yield. Deprotonation of 1H2 with NaH in THF, followed by reaction with LnCl3 in THF gives, after recrystallization from a toluene or benzene solution, dinuclear complexes (1)3Y2(thf)2 · 3C7H8 (3 · 3C7H8) and (1)3Yb2(thf)2 · 3C6H6 (4 · 3C6H6), respectively, in good yields. Treatment of 1H2 with Ln[N(SiMe3)2]3 in toluene under reflux, followed by recrystallization from a benzene solution gives the dimeric amido complexes {1-LnN(SiMe3)2}2 · 2C6H6 (Ln = Y (5 · 2C6H6), Yb (6 · 2C6H6)) in good yields. All compounds have been characterized by various spectroscopic techniques, elemental analyses and X-ray diffraction analyses. Complexes 5 and 6 are active catalysts for the polymerization of methyl methacrylate (MMA) in toluene, affording syn-rich poly-(MMA)s.  相似文献   

18.
The mono(guanidinate) lanthanide borohydride complexes of [(Me3Si)2NC(NCy)2]Ln(BH4)2(THF)2 (Ln = Yb (1), Er (2)) have been synthesized by the reactions of corresponding Ln(BH4)3(THF)3 with sodium guanidinate of [(Me3Si)2NC(NCy)2]Na in a 1:1 molar ratio in THF. They were characterized by elemental analysis, infrared spectrum and X-ray diffraction analysis. 1 and 2 have similar structures. The lanthanide ion was bonded by an η2-guanidinate ligand, two η3-BH4 ligands and two THF molecules as a distorted octahedron. The two BH4 ligands in a complex are equivalent and cis to each other. The structure of solvated sodium guanidinate of {[(Me3Si)2NC(NCy)2]Na(THF)}2 (3) was also presented. In a dimeric molecule of 3, each Na atom is bound to three nitrogen atoms from two guanidinate groups and one oxygen atom from the THF molecule. 1 and 2 displayed moderate high catalytic activity for the polymerization of methyl methacrylate. The Er complex is more active than the Yb complex.  相似文献   

19.
The reaction of potassium hexamethyldisilazide (K-HMDS) with 1 equiv. of the bulky formamidine N(Diep)C(H)NH(Diep) (DiepFormH, Diep = 2,6-Et2C6H3) in THF yields the half deprotonated compound [K(DiepForm)(DiepFormH)] (1), which exhibits suppressed reactivity with the hexamethyldisilazide anion. Reaction of 1 with n-BuLi gives the polymer [{Li(THF)2K(DiepForm)2}n] (2). Preparation of 1 in the presence of the chelating solvents 1,2-dimethoxyethane (DME) or N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) gives the fully deprotonated species [{K3(DiepForm)3(DME)3}n] (3) and [{K(PMDETA)K(DiepForm)2}n] (6). The syntheses of compounds 1-3, 6 and related compounds, e.g. [{K3{N(Dimp)C(H)N(Dimp)}3(DME)3}n] (4) (Dimp = 2,6-Me2C6H3), are described.  相似文献   

20.
Four transition–lanthanide metal–organic coordination polymers, namely [Ag2Ln(nic)4(H2O)4 · (ClO4) · H2O] [Ln = Eu (1), Gd (2)] and [AgLn(nic)2(ox)0.5(H2O)2 · (ClO4) · H2O] [Ln = Tb (3), Yb (4)] (nic = nicotinate; ox = oxalate) have been synthesized by the hydrothermal reactions of 4d and 4f metal salts with N-/O-donor ligands. The isostructural complexes 1 and 2 exhibit novel 2D wave-like heterometallic layers constructed by the assembly of 1D chains of lanthanide–carboxylate with Ag(nic)2 subunits. Complexes 3 and 4 show another unusual 3D heterometallic coordination framework constructed from 2D lanthanide–oxalate layers and pillar-like Ag(nic)2 subunits. Furthermore, the luminescent properties of complexes 1 and 3 were studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号