首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A series of organotin(IV) complexes with O,O-diethyl phosphoric acid (L1H) and O,O-diisopropyl phosphoric acid (L2H) of the types: [R3Sn · L]n (L = L1, R = Ph 1, R = PhCH22, R = Me 3, R = Bu 4; L = L2, R = Ph 9, R = PhCH210, R = Me 11, R = Bu 12), [R2Cl Sn · L]n (L = L1, R = Me 5, R = Ph 6, R = PhCH27, R = Bu 8; L = L2, R = Me 13, R = Ph 14, R = PhCH215, R = Bu 16), have been synthesized. All complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 31P and 119Sn) spectroscopy analysis. Among them, complexes 1, 2, 3, 5, 8, 9 and 11 have been characterized by X-ray crystallography diffraction analysis. In the crystalline state, the complexes adopt infinite 1D infinite chain structures which are generated by the bidentate bridging phosphonate ligands and the five-coordinated tin centers.  相似文献   

2.
A series of organotin (IV) complexes with 6-amino-1,3,5-triazine-2,4-dithiol of the type [(RnSnCl4−n)2 (C3H2N4S2)] (n = 3: R = Me 1, n-Bu 2, PhCH23, Ph 4; n = 2: R = Me 5, n-Bu 6, PhCH27, Ph 8) have been synthesized. All the complexes 1-8 have been characterized by elemental analysis, IR, 1H and 13C NMR spectra. Among them complexes 1, 4, 5 and 8 have also been characterized by X-ray crystallography diffraction analyses, which revealed that the tin atoms of complexes 1, 4, 5 and 8 are all five-coordinated with distorted trigonal bipyramid geometries.  相似文献   

3.
The organotin (IV) derivatives of 2-mercapto-4-methylpyrimidine (Hmpymt) R3SnL (R = Ph 1, PhCH22, n-Bu 3), R2SnClmLn (m = 1, n = 1, R = CH34, Ph 5, n-Bu 6, PhCH27; m = 0, n = 2, R = CH38, n-Bu 9, Ph 10, PhCH211) were obtained by the reaction of the organotin(IV) chlorides R3SnCl or R2SnCl2 with 2-mercapto-4-methylpyrimidine hydrochloride (HCl · Hmpymt) in 1:1 or 1:2 molar ratio. All complexes 1-11 were characterized by elemental analyses, IR, 1H, 13C and temperature-dependent 119Sn NMR spectra. Except for complexes 3 and 6, the structures of complexes 1, 2, 4, 5, 7, 8-11 were confirmed by X-ray crystallography. Including tin-nitrogen intramolecular interaction, the tin atoms of complexes 1-7 are all five-coordinated and their geometries are distorted trigonal bipyramidal. While the tin atoms of complexes 8-11 are six-coordinated and their geometries are distorted octahedral. Besides, the ligand adopts the different coordination modes to bond to tin atom between the complexes 1, 6, 7 and 2, 3, 4, 5, 8-11. Furthermore, intermolecular Sn?N or Sn?S interactions were recognized in crystal structures of complexes 4, 7 and 11, respectively.  相似文献   

4.
Twelve new organotin complexes with 4-sulfanylbenzoic acid of two types: RnSn[S(C6H4COOH)]4−n (I) (n = 3: R = Me 1, n-Bu 2, Ph 3; PhCH24; n = 2: R = Me 5; n-Bu 6, Ph 7, PhCH28) and R3Sn(SC6H4COO)SnR3 · mEtOH (II) (m = 0: R = Me 9, n-Bu 10, PhCH212; m = 2: R = Ph 11), along with the 4,4′-bipy adduct of 9, [Me3Sn(SC6H4COO)SnMe3]2(4,4-bipy) 13, have been synthesized. The coordination behavior of 4-sulfanylbenzoic acid is monodentate in 1-8 by thiol S atom but not carboxylic oxygen atom. While, in 9-13 it behaves as multidenate by both thiol S atom and carboxylic oxygen atoms. The supramolecular structures of 6, 11 and 13 have been found to consist of 1D molecular chains built up by intermolecular O-H?O, C-H?O or C-H?S hydrogen bonds. The supramolecular aggregation of 7 is 2D network determined by two C-H?O hydrogen bonds. Extended intermolecular C-H?O interactions in the crystal lattice of 9 link the molecules into a 2D network.  相似文献   

5.
The organotin(IV) complexes R2Sn(tpu)2 · L [L = 2MeOH, R = Me (1); L = 0: R = n-Bu (2), Ph (3), PhCH2 (4)], R3Sn(Hthpu) [R = Me (5), n-Bu (6), Ph (7), PhCH2 (8)] and (R2SnCl)2 (dtpu) · L [L = H2O, R = Me (9); L = 0: R = n-Bu (10), Ph (11), PhCH2 (12)] have been synthesized, where tpu, Hthpu and dtpu are the anions of 6-thiopurine (Htpu), 2-thio-6-hydroxypurine (H2thpu) and 2,6-dithiopurine (H2dtpu), respectively. All the complexes 1-12 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. And complexes 1, 2, 7 and 9 have also been determined by X-ray crystallography, complexes 1 and 2 are both six-coordinated with R2Sn coordinated to the thiol/thione S and heterocyclic N atoms but the coordination modes differed. As for complex 7 and 9, the geometries of Sn atoms are distorted trigonal bipyramidal. Moreover, the packing of complexes 1, 2, 7 and 9 are stabilized by the hydrogen bonding and weak interactions.  相似文献   

6.
Fluorotitanates (LH)2[TiF6nH2O (1: R = pyridine, n = 1, 2: R = 2-picoline, n = 2, 3: R = 2,6-lutidine, n = 0, 4: R = 2,4,6-collidine, n = 0) and (LH)[TiF5(H2O)] (3a: L = 2,6-lutidine) have been synthesized by the reaction of pyridine or corresponding methyl substituted pyridines and titanium dioxide dissolved in hydrofluoric acid. The crystal structures of ionic compounds 1, 2, 3, 3a and 4 have been determined by single-crystal X-ray diffraction analysis. The hydrogen bonding led to the formation of discrete (LH)2[TiF6] units (4), chains (1-3), and layers (3a). The additional π-π interactions present in 1, 2, and 4 results in chain structures of 1 and 4 and in a layer structure of 2. The [TiF6]2− and [TiF5(H2O)] anions were observed by 19F NMR spectroscopy in aqueous solutions of 1, 2, 3, 3a and 4.  相似文献   

7.
A series of new triorganotin(IV) pyridinecarboxylates with 6-hydroxynicotinic acid (6-OH-3-nicH), 5-hydroxynicotinic acid (5-OH-3-nicH) and 2-hydroxyisonicotinic acid (2-OH-4-isonicH) of the types: [R3Sn (6-OH-3-nic)·L]n (I) (R = Ph, L = Ph·EtOH, 1; R = Bn, L = H2O·EtOH, 2; R = Me, L = 0, 3; R = n-Bu, L = 0, 4), [R3Sn (5-OH-3-nic)]n (II) (R = Ph, 5; R = Bn, 6; R = Me, 7; R = n-Bu, 8), [R3Sn (2-OH-4-isonic·L)]n (III) (R = Bn, 9, L = MeOH; R = Me, L = 0, 10; R = Ph, 11, L = 0.5EtOH) have been synthesized. All the complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 119Sn) spectroscopy analyses. Among them, except for complexes 5 and 6, all complexes were also characterized by X-ray crystallography diffraction analysis. Crystal structures show that complexes 1-10 adopt 1D infinite chain structures which are generated by the bidentate O, O or N, O and the five-coordinated tin centers. Significant O-H?O, and N-H?O intermolecular hydrogen bonds stabilize these structures. Complex 11 is a 42-membered macrocycle containing six tin atoms, and forms a 2D network by intermolecular N-H?O hydrogen.  相似文献   

8.
A series of organotin(IV) complexes with 2,5-dimercapto-1, 3, 4-thiodiazole (HHdmt) of the type (RnSnClm)2(dmt) (m=0, n=3, R=Ph 1, PhCH22, n-Bu 3; m=1, n=2, R=Ph 4) and [R2Sn(dmt) · L]n (L=0.5C6H6, R=CH35; L=0, n=5, R=n-Bu 6) have been synthesized. All complexes 1-6 were characterized by elemental analysis, IR, 1H and 13C NMR spectra. And except for 3, complexes 1, 2, 4, 5 and 6 were also determined by X-ray crystallography. The tin atoms of complexes 1, 2, 3 and 4 are all five-coordinated. The geometries at tin atoms of 1, 2, 3 and 4 are distorted trigonal bipyramidal. The tin atoms of complexes 5 and 6 are six-coordinated and their geometries are distorted octahedral.  相似文献   

9.
In this work the synthesis of phosphane selenides (FcCC)nPh3−nPSe (2a, n = 1; 2b, n = 2; 2c, n = 3; Fc = ferrocenyl, (η5-C5H4)(η5-C5H5)Fe) from (FcCC)nPh3−nP (1a, n = 1; 1b, n = 2; 1c, n = 3) and selenium is described to estimate the σ-donor properties of these systems by 31P{1H} NMR spectroscopy. Progressive replacement of phenyl by ferrocenylethynyl causes a shielding of the phosphorus atom with increasing of the 1J(31P-77Se) coupling constants.The palladiumdichloride metal-organic complexes [((FcCC)nPh3−nP)2PdCl2] (3a, n = 1; 3b, n = 2; 3c, n = 3) have been used as (pre)catalysts in the Suzuki-Miyaura (reaction of 2-bromo-toluene (4a) and 4-bromo-acetophenone (4b), respectively, with phenyl boronic acid (5) to give 2-methyl biphenyl (6a) and 4-acetyl biphenyl (6b)) and in the Heck-Mizoroki reaction (treatment of iodobenzene (7) with tert-butyl acrylate (8) to give E-tert-butyl cinnamate (9)).The structures of molecules 1a, 1c, 2c, and 3c in the solid state were determined by single X-ray structure analysis showing that the structural parameters of these systems are unexceptional and correspond to those of related phosphanes, seleno phosphanes, and palladium dichloride complexes.  相似文献   

10.
N-thioamide thiosemicarbazone derived from 4-(methylthio)benzaldehyde (R = H, HL1; R = Me, HL2 and R = Ph, HL3) have been prepared and their reaction with fac-[ReX(CO)3(CH3CN)2] (X = Br, Cl) in methanol gave the adducts [ReX(CO)3(HLn)] (1a X = Cl, n = 1; 1a′ X = Br, n = 1; 1b X = Cl, n = 2; 1b′ X = Br, n = 2; 1c X = Cl, n = 3; 1c′ X = Br, n = 3) in good yield.All the compounds have been characterized by elemental analysis, mass spectrometry (ESI), IR and 1H NMR spectroscopic methods. Moreover, the structures of HL2, HL3, HL3·(CH3)2SO and 1b′·H2O were also elucidated by X-ray diffraction. In 1b′, the rhenium atom is coordinated by the sulphur and the azomethine nitrogen atoms (κS,N3) forming a five-membered chelate ring, as well as three carbonyl and bromide ligands. The resulting coordination polyhedron can be described as a distorted octahedron.The structure of the dimers is based on rhenium(I) thiosemicarbazonates [Re2(L1)2(CO)6] (2a), [Re2(L2)2(CO)6] (2b) and [Re2(L3)2(CO)6] (2c) as determined by X-ray studies. Methods of synthesis were optimized to obtain amounts of these thiosemicarbazonate complexes. In these compounds the dimer structures are achieved by Re-S-Re bridges, where S is the thiolate sulphur from a κS,N3-bidentate thiosemicarbazonate ligand.Some single crystals isolated in the synthesis of 2b contain [Re(L4)(L2)(CO)3] (3b) where L4 (=2-methylamine-5-(para-methylsulfanephenyl)-1,3,4-thiadiazole) is originated in a cyclization process of the thiosemicarbazone. Furthermore, the rhenium atom is coordinate by the sulphur and the thioamidic nitrogen of the thiosemicarbazonate (κS,N2) affording a four-membered chelate ring.  相似文献   

11.
Eight new organoantimony(V) complexes with 1-phenyl-1H-tetrazole-5-thiol [L1H] and 2,5-dimercapto-4-phenyl-1,3,4-thiodiazole [L2H] of the type RnSbL5 − n (L = L1: n = 4, R = n-Bu 1, Ph 2, n = 3, R = Me 3, Ph 4; L = L2: n = 4, R = n-Bu 5, Ph 6, n = 3, R = Me 7, Ph 8) have been synthesized. All the complexes 1-8 have been characterized by elemental, FT-IR, 1H and 13C NMR analyses. Among them complexes 2, 6 and 8 have also been confirmed by X-ray crystallography. The structure analyses show that the antimony atoms in complexes 2 and 6 display a trigonal bipyramid geometry, while it displays a distorted capped trigonal prism in complex 8 with two intramolecular Sb?N weak interactions. Furthermore, the supramolecular structure of 2 has been found to consist of one-dimensional linear molecular chain built up by intermolecular C-H?N weak hydrogen bonds, while a macrocyclic dimer has been found in complex 6 linked by intermolecular C-H?S weak hydrogen bonds with head-to-tail arrangement. Interestingly, one-dimensional helical chain is recognized in complex 8, which is connected by intermolecular C-H?S weak hydrogen bonds.  相似文献   

12.
Monomeric titanatrane i-PrOTi(OCMe2CH2)3N (1) and dimeric titanatranes [i-PrOTi(OCH2CH2)nN(CH2CMe2O)3−n]2 (n = 1, 2; n = 2, 3) were synthesized by the reaction of Ti(O-i-Pr)4 with a series of triethanolateamines such as (OCH2CH2)nN(CH2CMe2O)3−n3− (n = 0, Lig1; n = 1, Lig2; n = 2, Lig3), which vary by the number of CMe2 groups adjacent to a OH functionality from 3 (Lig1H3) to 2 (Lig2H3) to 1 (Lig3H3). The resultant titanatranes 13 have been characterized by solution 1H and 13C{1H} NMR and their solid state structures have been determined by X-ray crystallography. Whereas compound 1 is monomeric in the solid state, compounds 2 and 3 are dimeric, due to the reduction of the steric congestion in the vicinity of the Ti.  相似文献   

13.
The five new silanes C5Me3RSiMenCl3 − n (n = 3, R = i-Pr (5); n = 2, R = i-Pr (6); n = 2, R = s-Bu (7); n = 2, R = cyclohexyl (8); and n = 3, R = t-Bu (9)) were synthesized by reaction of 1-alkyl-2,3,4-trimethylcyclopentadienyl lithium salts with appropriate chlorosilane and characterized by NMR, MS, and IR spectra. At elevated temperatures (250-360 K), all the silanes undergo a non-degenerate sigmatropic silyl rearrangement, which generates non-equivalent structures a and b. The presence of minor structure c was observed in compounds 5 and 7 only. The Diels-Alder cycloaddition of 5 with strong dienophiles tetracyanoethylene (TCNE), and dimethylacetylenedicarboxylate (DMAD) provides compounds 10 and 11, which confirmed isomers a and b, respectively. The free energy of activation of b → a isomerization for compounds 5-8 evaluated from variable temperature NMR spectra show only marginal influence of group R on the 1,2-silyl shift rate. Moreover, in compounds 5 and 7, the process b → a was found significantly faster than b → c process in the above-mentioned temperature range.  相似文献   

14.
Eight diorganotin esters of Schiff base ligands formulated as [R2SnLY]2, where L1 is 4-NC5H4CON2C(CH3) CO2 with Y = H2O, R = Ph (1), PhCH2 (2), m-ClC6H4CH2 (3), and L2 is 2-HOC6H4CON2C(CH3) CO2 with Y = CH3OH, R = PhCH2 (4), o-ClC6H4CH2 (5), m-ClC6H4CH2 (6), o-FC6H4CH2 (7), p-FC6H4CH2 (8) have been prepared and characterized by elemental analysis, IR, 1H and 119Sn NMR spectra. The crystal structures of compounds 1, 2 and 4 have been determined by X-ray single crystal diffraction. Their structures show that the tin atoms of three compounds are all rendered seven-coordinated in distorted pentagonal bipyramid geometries with a planar SnO4N unit and two apical aryl carbon atoms. A comparison of the IR spectra of the ligands with those of the corresponding compounds, reveals that the disappearance of the bands assigned to carbonyl unambiguously conforms that the ligands coordinate with tin in the enol form.  相似文献   

15.
Compounds M(CO)23-C3H5)(L-L)(NCBH3) (L-L = dppe, M = Mo(1), W(2); L-L = bipy, M = Mo(3), W(4); L-L = en, M = Mo(5), W(6)) were prepared and characterized. The single crystal X-ray analyses of 2-6 revealed that the cyanotrihydroborate anion bonds to the metal through a nitrogen atom, the open face of the allyl group being pointed toward the two carbonyls (endo-isomer). In compounds 2, 5, and 6, the two donor atoms of the bidentate ligand occupy equatorial and axial positions, respectively. In the solid state structures of compounds 3 and 4 both nitrogen atoms of the bipy ligand occupy equatorial positions. The NMR spectroscopy reveals a fluxional behavior of compounds 1, 2, 5, and 6 in solution. Although the fluxional behavior of compounds 5 and 6 ceased at about −40 °C, that of compound 1 could not be stopped even at −90 °C. Their low temperature conformations are consistent with their solid state structures. Both the endo- and exo-isomers coexist in solution for compounds 3 and 4.  相似文献   

16.
Three novel metal-organic frameworks [M(1,3-BDC)(Dpdq)(H2O)m] · nH2O, (M = CoII (1), CdII (2) or ZnII (3); m = 0, 1; n = 0, 1, 2, respectively) have been obtained from hydrothermal reactions of three different metal(II) nitrates with the same mixed ligands [isophthalic acid (1,3-BDC) and 2,3-di-2-pyridylquinoxaline (Dpdq)], and structurally characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray diffraction analyses. Single-crystal X-ray analyses show that each pair of metal ions are bridged by various coordination modes of 1,3-BDC ligands to form left- and right-handed helical chains in 1, linear chains in 2, and double chains in 3, respectively. N-containing flexible ligand Dpdq takes a chelating coordination mode acting as terminal ligand. In the compound 1, adjacent left- and right-handed helical chains are packed through hydrogen bonds to form a two-dimensional (2-D) structure. In the compounds 2 and 3, adjacent chains are further linked by hydrogen bonds and/or π-π stacking interactions to form a three-dimensional (3-D) distorted hexagon meshes supramolecular framework for 2 and a ZnS-related three-dimensional (3-D) topology for 3, respectively. The different structures of compounds 1-3 illustrate that the influence of the metal ions in the self-assembly of polymeric coordination architectures. In addition, compounds 2 and 3 exhibit blue emission in the solid state at room temperature.  相似文献   

17.
The reactivity of the dimeric cyclopalladated compounds derived from biphenyl-2-ylamine (μ-X)22-N2′,C1-1-Pd-2-{(2′-NH2C6H4)C6H4}]2 [X = OAc (1), X = Cl (2)] towards unsaturated organic molecules is reported. Compound 1 reacted with carbon monoxide and tbutyl isocyanide producing phenanthridin-6(5H)-one and N-tert-butylphenanthridin-6-amine in 63% and 88% yield, respectively. Compound 2 reacted separately with diphenylacetylene and 3-hexyne, affording the mononuclear organopalladium compounds [κ2-N2″,C12-C2,C3- 1-Pd{(R-CC-R)2-2′-(2″-NH2C6H4)C6H4}Cl] [R = Ph (5), R = Et (6)] in 50-60% yield, which derived from the insertion of two alkyne molecules into the C-Pd σ bonds of 2. The crystal structure of compounds 5 and 6 has been determined. Compound 5 crystallized in the monoclinic space group P21/n with a = 13.3290(10) Å, b = 10.6610(10) Å and c = 22.3930(10) Å and β = 100.2690(10)°. Compound 6 crystallized in the triclinic space group with a = 7.271(7) Å, b = 10.038(3) Å and c = 16.012(5) Å, and α = 106.79(3)°, β = 96.25(4)° and γ = 99.62(4)°. The crystal structures of 5 and 6 have short intermolecular Pd-Cl?H-N-Pd non-conventional hydrogen bonds, which associated the molecules in chains in the first case and in dimers in the second.  相似文献   

18.
Alkyl aluminum N,N′-dimethyloxalamidates R4Al2(dmoa) (1, R = Me; 2, R = Et; 3, R = iBu; 4, R = tBu) (dmoa-H2 = N,N′-dimethyloxalamide) have been prepared and characterized. Molecular structures of the compounds 1 and 4 have been determined by X-ray crystallography. The centrosymmetric molecules of the compounds consist of one N,N′-dimethyloxalamidate unit bonded to two four-coordinated aluminum atoms. Each of the aluminum atoms is bonded to two alkyl groups, and oxygen and nitrogen atoms originating from two different amidate groups. A skeleton framework of the molecules of 1 and 4 consists of two fused AlNOC2 heterocyclic rings, which are flat and positioned in one plane. It was shown that compounds 1-3 were initiators in a process of ring opening polymerization (ROP) of ε-caprolactone. The compound 4 exhibited low activity in ROP.  相似文献   

19.
Bis(dichlorosilyl)methanes 1 undergo the two kind reactions of a double hydrosilylation and a dehydrogenative double silylation with alkynes 2 such as acetylene and activated phenyl-substituted acetylenes in the presence of Speier’s catalyst to give 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes 4 as cyclic products, respectively, depending upon the molecular structures of both bis(dichlorosilyl)methanes (1) and alkynes (2). Simple bis(dichlorosilyl)methane (1a) reacted with alkynes [R1-CC-R2: R1 = H, R2 = H (2a), Ph (2b); R1 = R2 = Ph (2c)] at 80 °C to afford 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 as the double hydrosilylation products in fair to good yields (33-84%). Among these reactions, the reaction with 2c gave a trans-4,5-diphenyl-1,1,3,3-tetrachloro-1,3-disilacyclopentane 3ac in the highest yield (84%). When a variety of bis(dichlorosilyl)(silyl)methanes [(MenCl3 − nSi)CH(SiHCl2)2: n = 0 (1b), 1 (1c), 2 (1d), 3 (1e)] were applied in the reaction with alkyne (2c) under the same reaction conditions. The double hydrosilylation products, 2-silyl-1,1,3,3-tetrachloro-1,3-disilacyclopentanes (3), were obtained in fair to excellent yields (38-98%). The yields of compound 3 deceased as follows: n = 1 > 2 > 3 > 0. The reaction of alkynes (2a-c) with 1c under the same conditions gave one of two type products of 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes (4): simple alkyne 2a and terminal 2b gave the latter products 4ca and 4cb in 91% and 57% yields, respectively, while internal alkyne 2c afforded the former cyclic products 3cc with trans form between two phenyl groups at the 3- and 4-carbon atoms in 98% yield, respectively. Among platinum compounds such as Speier’s catalyst, PtCl2(PEt3)2, Pt(PPh3)2(C2H4), Pt(PPh3)4, Pt[ViMeSiO]4, and Pt/C, Speier’s catalyst was the best catalyst for such silylation reactions.  相似文献   

20.
An efficient method for the preparation of carbosiloxane dendrimers with end-grafted SiH-bonds is given by using the alcohols HOCH(Me)(CH2)4SiMe3 − nHn (4a: n = 1, 4b: n = 2, 4c: n = 3), which themselves are accessible by the hydrosilylation of MeCOCH2CH2CHCH2 (1) with the chlorosilanes HSiMe3 − nCln (2a: n = 1, 2b: n = 2, 2c: n = 3) and hydrogenation of the latter species with Li[AlH4]. Alcohols 4a-4c can be used as starting materials for the preparation of carbosiloxane dendrimers of the 1st-3rd generation. For the synthesis of the 1st generation dendrimers, Me4 − mSiClm (5a: m = 1, 5b: m = 2, 5c: m = 3, 5d: m = 4) is reacted with 4a-4c in presence of NEt3 as base. The dendritic molecules Me4 − mSi[OCH(Me)(CH2)4SiMe3 − nHn]m (n = 1: 6a, m = 1; 6b, m = 2; 6c, m = 3; 6d, m = 4. n = 2: 7a, m = 1; 7b,m = 2; 7c, m = 3; 7d, m = 4. n = 3: 8a, m = 3; 8b, m = 4) are thereby obtained in excellent yield. Carbosiloxane dendrimers of the 2nd and 3rd generation with a MeSiO3- or SiO4-core can be isolated from the reaction of MeSi(OCH2CH2CH2SiMe2Cl)3 (9), MeSi(OCH2CH2CH2SiMeCl2)3 (11), Si(OCH2CH2CH2SiMe2Cl)4 (13) and MeSi(OCH2CH2CH2SiMe(OCH2CH2CH2SiMe2Cl)2)3 (15) with 4a or 4b, respectively, under similar reaction conditions. Thereby MeSi[OCH2CH2CH2SiMe2OCH(Me)(CH2)4SiMe2H]3 (10), MeSi[OCH2CH2CH2SiMe[OCH(Me)(CH2)4SiMe3 − nHn]2]3 (12a, n = 1; 12b, n = 2), Si[OCH2CH2CH2SiMe[OCH(Me)(CH2)4SiMe2H]2]4 (14) and MeSi[OCH2CH2CH2SiMe[OCH2CH2CH2SiMe2OCH(Me)(CH2)4SiMe3 − nHn]2]3 (16) are formed as colourless oils.Compounds 3, 4, 6-8, 10, 12, 14 and 16 were characterised by elemental analysis as well as spectroscopic (IR, NMR) and mass spectrometric (ESI-TOF) studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号