首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vibrational spectrum of Mg(3)Al(2)Si(3)O(12) pyrope is calculated at the Gamma point by using the periodic ab initio CRYSTAL program that adopts an all-electron Gaussian-type basis set and the B3LYP Hamiltonian. The full set of frequencies (17 IR active, 25 RAMAN active, 55 silent modes) is calculated. The effect of the basis set and of the computational parameters on the calculated frequencies is discussed. It is shown that the mean absolute difference with respect to the experimental IR and RAMAN data is as small as 6 and 8 cm(-1), respectively. The IR and RAMAN modes are fully characterized by various tools such as isotopic substitution, direct inspection of the eigenvectors, and graphical representation. The present calculation permits to clarify some of the assignment and interpretation problems raised by experiment and previous simulations with force fields.  相似文献   

2.
The infrared and Raman spectra of glycine molecule has been studied in spectral region 400-4000 cm(-1) in solid form as well as in water. The vibrational frequencies for the fundamental modes of the glycine in neutral and its zwitterionic form have also been calculated using AM1 semiempirical method as well as ab initio method with minimal basis set. The reliability of the minimal basis set and AM1 method with higher basis sets, for IR spectra of the neutral glycine conformers were examined. We find that the 6-21G basis set calculation yields structural parameters, rotational constant and dipole moment of glycine conformers, which are very similar to those obtained from extended basis set calculation as well as experimental values. IR frequencies for glycine conformer I are also calculated in water using SCRF=PCM model and compared with experimental values. A comparison between calculated frequencies for neutral glycine, and its zwitterionic form with observed IR and Raman bands have been made. The total energies for gas phase glycine and its zwitterionic form along with those of hydrated forms were also calculated. It is found from the calculations that in the gas phase neutral glycine is more stable as compared to its zwitterionic form.  相似文献   

3.
The geometry, frequency and intensity of the vibrational bands of aluminum(III) Tris-acetylacetone Al(AA)3 and its 1,3,5-(13)C derivative were obtained by the Hartree-Fock (HF) and Density Functional Theory (DFT) with the B3LYP, B1LYP, and G96LYP functionals and using the 6-31G* basis set. The calculated frequencies are compared with the solid IR and Raman spectra. All of the measured IR and Raman bands were interpreted in terms of the calculated vibrational modes. Most computed bands are predicted to be at higher wavenumbers than the experimental bands. The calculated bond lengths and bond angles are in good agreement with the experimental results. Analysis of the vibrational spectra indicates a strong coupling between the chelated ring modes. Four bands in the 500-390 cm(-1) frequency range are assigned to the vibrations of metal-ligand bonds.  相似文献   

4.
This work deals with the IR and Raman spectroscopy of 4-(2-furanylmethyleneamino) antipyrine (FAP), 4-benzylideneaminoantipyrine (BAP) and 4-cinnamilideneaminoantipyrine (CAP) by means of experimental and quantum chemical calculations. The equilibrium geometries, harmonic frequencies, infrared intensities and Raman scattering activities were calculated by density functional B3LYP method with the 6-31G(d) basis set. The comparisons between the calculated and experimental results covering molecular structures, assignments of fundamental vibrational modes and thermodynamic properties were investigated. The optimized molecular geometries have been compared with the experimental data obtained from XRD data, which indicates that the theoretical results agree well with the corresponding experimental values. For the three compounds, comparisons and assignments of the vibrational frequencies indicate that the calculated frequencies are close to the experimental data, and the IR spectra are comparable with some slight differences, whereas the Raman spectra are different clearly and the strongest Raman scattering actives are relative tightly to the molecular conjugative moieties linked through their Schiff base imines. The thermodynamic properties (heat capacities, entropies and enthalpy changes) and their correlations with temperatures were also obtained from the harmonic frequencies of the optimized strucutres.  相似文献   

5.
The accurate harmonic vibration frequencies together with the infrared (IR) and Raman intensities of the most stable conformers of Al2O2 and Al2O3 molecules have been calculated by the density functional theory (DFT) method with B3LYP exchange–correlation potential and using a set of the augmented correlated consistent basis sets up to quintuple order. The anharmonic vibration frequencies of the non-linear Al2O2 molecule have also been calculated. The obtained equilibrium geometrical parameters, harmonic and anharmonic vibration frequencies along with the IR and Raman intensities good converge to their limits with increasing the size of the used basis set. A comparison of the calculated harmonic and anharmonic vibrational frequencies with the available experimental ones points out that the small differences between the calculated harmonic and experimental frequencies can be further substantially reduced when calculations of the anharmonic vibrational frequencies will be available for all types of molecular geometries.  相似文献   

6.
The vibrational spectrum of alpha-AlOOH diaspore has been calculated at the B3LYP level of theory with a double-zeta quality Gaussian-type basis set by using the periodic ab initio CRYSTAL code. Harmonic frequencies at the Gamma point and the corresponding 48 normal modes are analyzed and classified in terms of simple models (octahedra modes, hydrogen stretching, bending, rotations) by direct inspection of eigenvectors, graphical representation, and isotopic substitution. Hydrogen modes are fully separated from the octahedra modes appearing under 800 cm(-1); bending modes are located in the range of 1040-1290 cm(-1), whereas stretching modes appear at 3130-3170 cm(-1). The available experimental IR and Raman spectra are characterized by broad bands, in some cases as large as 800 cm(-1), and individual peaks are obtained by decomposing these bands in terms of Lorentz-Gauss product functions; such a fitting procedure is affected by a relatively large degree of arbitrariness. The comparison of our calculated data with the most complete sets of experimental data shows, nevertheless, a relatively good agreement for all but the H modes; the mean absolute differences for modes not involving H are 10.9 and 7.2 cm(-1) for the IR and the Raman spectra, respectively, the maximum differences being 15.5 and 18.2 cm(-1). For the H bending modes, differences increase to 30 and 37 cm(-1), and for the stretching modes, the calculated frequencies are about 200 cm(-1) higher than the experimental ones; this is not surprising, as anharmonicity is expected to red shift the OH stretching by about 150 cm(-1) in isolated OH groups and even more when the latter is involved in strong hydrogen bonds, as is the case here.  相似文献   

7.
8.
The FT-Raman and FT-IR spectra for 3-Ethylpyridine (3-EP) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (B3LYP) method by employing 6-31G(d,p) and 6-311++G(d,p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values of some substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311++G(d,p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the pyridine are effected upon profusely with the C2H5 substitutions in comparison to pyridine and these differences are interpreted.  相似文献   

9.
The comparative analysis of IR and Raman spectra of peramine and its four derivatives in solid state was carried out. The harmonic vibrational frequencies, infrared intensities, and Raman scattering activities were calculated at density functional B3LYP methods with 6-311++G(d,p) basis set. For the predicted spectra, a potential energy distribution of normal modes was also calculated. For peramine derivatives the conjugation effect of pyrrole with pyrazinone ring was observed as a result of introduction of double bond. Moreover, 1H NMR analysis indicated that pyrrole protons are deshielded in comparison with the pyrrolopyrazinone model ring system.  相似文献   

10.
The Molecular structure, conformational stability and vibrational frequencies of succinonitrile NCCH2CH2CN have been investigated with ab initio and density functional theory (DFT) methods implementing the standard 6-311++G* basis set. The potential energy surfaces (PES) have been explored at DFT-B3LYP, HF and MP2 levels of theory. In agreements with previous experimental results, the molecule was predicted to exist in equilibrium mixture of trans and gauche conforms with the trans form being slightly lower in energy. The vibrational frequencies and the corresponding vibrational assignments of succinonitrile in both C2h and C2 symmetry were examined theoretically and the calculated Infrared and Raman spectra of the molecule were plotted. Observed frequencies for normal modes were compared with those calculated from normal mode coordinate analysis carried out on the basis of ab initio and DFT force fields using the standard 6-311++G* basis set of the theoretical optimized geometry. Theoretical IR intensities and Raman activities are reported.  相似文献   

11.
The FT-Raman and FT-IR spectra for benzenesulfonic acid methyl ester (BSAME) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) method by employing 6-311G (d, p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by DFT (LSDA, B3LYP, B3PW91 and MPW1PW91) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for sulfonic acid and some substituted sulfonic acids. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from DFT. The scaled vibrational frequencies at LSDA/B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the sulfonic acid are effected upon profusely with the methyl substitution in comparison to benzene sulfonamide and these differences are interpreted.  相似文献   

12.
Vibrational (IR and Raman) spectra for the metal-free phthalocyanine (H2Pc) have been comparatively investigated through experimental and theoretical methods. The frequencies and intensities were calculated at density functional B3LYP level using the 6-3 IG(d) basis set. The calculated vibrational frequencies were scaled by the factor 0.9613 and compared with the experimental result. In the IR spectrum, the characteristic IR band at 1008.cm^-1 is interpreted as C-N (pyrrole) in-plane bending vibration, in contrast with the traditional assigned N-H in-plane or out-of-plane bending vibration. The band at 874 cm^-1 is attributed to the isoindole deformation and aza vibration. In the Raman spectrum, the bands at 540, 566, 1310, 1340, 1425, 1448 and 1618 cm^-1 are also re-interpreted. Assignments of vibrational bands in the IR and Raman spectra are given based on density functional calculations for the first time. The present work provides valuable information to the traditional empirical assignment and will be helpful for further investigation of the vibration spectra of phthalocyanine analogues and their metal complexes.  相似文献   

13.
FT-IR and FT-Raman (4000–100 cm−1) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities (C) standard entropies (S), and standard enthalpy changes (H).  相似文献   

14.
The equilibrium geometry, the Raman and IR vibrational spectra at the Γ point, TO–LO splitting, IR intensities, Born and dielectric tensors of magnesite MgCO3, dolomite MgCa(CO3)2 and calcite CaCO3 have been calculated with the periodic ab initio program CRYSTAL, by using an all-electron gaussian type basis set and the B3LYP hamiltonian. LO (longitudinal-optical) modes are computed by correcting the dynamical matrix through Born charges and high frequency dielectric tensors obtained from well localized Wannier functions and a saw-tooth computational scheme. The mean absolute difference between calculated and experimental frequencies (IR TO and LO and RAMAN) is as small as 6.9 cm−1 for magnesite, 7.7 cm−1 for dolomite and 8.5 cm−1 for calcite. Calculated IR intensities are in semiquantitative agreement with experiment. The modes of the three compounds are compared through graphical animation available on the CRYSTAL web-site.  相似文献   

15.
The normal mode frequencies and corresponding vibrational assignments of 1,5-dicarba-closo-pentaborane(5) are examined theoretically using the GAUSSIAN 98 set of quantum chemistry codes. All normal modes were successfully assigned to one of six types of motion predicted by a group theoretical analysis (C-H stretch, B-H stretch, B-B stretch, B-C stretch, C-H wag, and B-H wag) utilizing the D(3h) symmetry of the molecule. By comparing the vibrational frequencies with IR and Raman spectra available in the literature, a set of scaling factors is derived. Theoretical IR and Raman intensities are reported.  相似文献   

16.
The FTRaman and FTIR spectra for Toluic acid (TA) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (LSDA and B3LYP) method BY employing 6-311G (d, p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (LSDA/B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values for benzoic acid and some substituted benzoic acids. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311G (d, p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the TA are effected upon profusely with the methyl substitutions in comparison to benzoic acid and these differences are interpreted.  相似文献   

17.
采用第一性原理密度泛函方法,在考虑极化函数的双数字(DND)基组水平上,对α-[XMo12O40]n-(X=P, Si, Ge)杂多阴离子进行了几何构型优化,得到了与X-ray晶体衍射实验结果相一致的结构参数;并在优化几何构型基础上进行了振动频率分析,首次得到了非经验计算的杂多阴离子的振动光谱,计算的频率及强度与实验结果总体上吻合得较好.对全部22个有红外活性(IR)和44个有拉曼(R)活性的频率进行了指认,并与经验方法得到的结果进行了比较,同时,对部分频率的归属加以进一步的澄清与确认.  相似文献   

18.
Raman spectra of 2 (3H) benzofuranone have been recorded in the region 400-3200 cm(-1) and the IR spectra have been recorded in the region 200-4000 cm(-1). Vibrational frequencies for the fundamental modes of this bicyclic heteroatomic molecule have also been calculated using Austin method 1 (AM1) semiempirical molecular orbital method. Vibrational assignments have been made for the fundamental modes and the observed combination and overtone bands are also assigned. A splitting in the carbonyl group (C=O stretching) frequency observed at 1640-1660 cm(-1) in both Raman and IR spectra, is explained as Fermi-resonance. Net atomic charges for each atom of this molecule along with its heat of formation were also calculated. It is evident from the calculations that the 2 (3H) benzofuranone is more stable than the 3 (2H) benzofuranone in contrast to earlier estimates.  相似文献   

19.
Optimized geometries and vibrational frequencies were calculated for the hexamolybdoaluminate(III), [AlIII(OH)6Mo6O18]3-, Anderson-type heteropolyanion with the HF, B3LYP, B3PW91, B3P86 and B1LYP methods of theory using the LanL2DZ, SDD and combination of LanL2DZ with 6-31G (d, p) basis sets. The agreement between the optimized and experimental geometries was in the decreasing order: HF, B3P86, B3PW91, B1LYP and B3LYP. The calculated frequencies by the B3LYP have the smallest mean root mean square (RMS) error. The effect of the basis set on the calculated bond lengths and frequencies by the density functional calculations (DFT) methods was minor. The agreement between the previously reported IR and Raman spectra and the calculated values is, in general, good.  相似文献   

20.
The Fourier transform Raman and Fourier transform infrared spectra of p-bromophenoxyacetic acid were recorded in the solid phase. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by HF and DFT (B3LYP) method with the 6-31G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental ones. A detailed interpretation of the infrared and Raman spectra of p-bromophenoxyacetic acid is reported on the basis of the calculated potential energy distribution. The theoretical spectrograms for the IR spectrum of the title molecule have been constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号