首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the problem of state feedback and output feedback control of a class of nonlinear systems with delayed measurements. This class of nonlinear systems is made up of continuous-time linear systems with nonlinear perturbations. The nonlinearity is assumed to satisfy a global Lipschitz condition and the time delay is assumed to be time-varying and have no restriction on its derivative. On the basis of the Lyapunov–Krasovskii approach, sufficient conditions for the existence of the state feedback controller and the output feedback controller are derived in terms of linear matrix inequalities. Methods of calculating the controller gain matrices are also presented. Two numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

2.
In this paper, the optimal control of a turboalternator connected to an infinite bus is considered. The alternator is controlled through a linear feedback of the state variables. The feedback parameters are obtained by solving a two-point nonlinear boundary-value problem. The values obtained for these parameters depend on the strength and duration of the disturbance, since the model is nonlinear, contrary to the usual feedback control of a linear model. In contrast to the model used in Ref. 1, the model used here include the transfer functions of the governor, the turbine, and the voltage regulator.This work was supported in part by the National Research Council of Canada, Grant No. A-4146.  相似文献   

3.
This paper considers the problem of stabilizing single-input affine switched nonlinear systems. The main idea is to transform a switched nonlinear system to an equivalent controllable switched linear system. First, we define the notion of modal state feedback linearization. Then, we develop a set of conditions for modal state feedback linearizability of a certain class of second order switched nonlinear systems. Considering two special structures, easily verifiable conditions are proposed for the existence of suitable state transformations for modal feedback linearization. The results are constructive. Finally, the method is illustrated with two examples, including a Continuous Stirred Tank Reactor (CSTR) to demonstrate the applicability of the proposed approach.  相似文献   

4.
In this paper, the optimal control of a system with two identical interconnected turbogenerators, which are connected to an infinite bus, is considered. The alternators are controlled through a linear feedback of the state variables. The feedback parameters are obtained by solving a nonlinear, two-point boundary-value problem. The values obtained for these parameters depend on the strength and duration of the disturbance, since the model is nonlinear, contrary to the usual feedback control of a linear model. In contrast to the model used in Ref. 1, the model used here includes the transfer function of the governors, the turbines, and the voltage regulators.This work was supported in part by the National Science and Engineering Research Council of Canada, Grant No. A4146. The authors wish to express their appreciation to Mr. T. L. Gan for his help in computations.  相似文献   

5.
In this paper, the optimal control of a system with two identical interconnected turbogenerators, which are connected to an infinite bus, is considered. Control of the generators is effected through control of field voltages and turbine torques. The alternators are controlled through a linear feedback of the state variables. The feedback parameters are obtained by solving a nonlinear, two-point boundary-value problem. The values obtained for these parameters depend on the strength and duration of the disturbance, since the model is nonlinear, in contrast to the usual feedback control of a linear model. The numerical values used are indicated in the Appendix.  相似文献   

6.
In this paper, a new approach to the linear exact model matching problem for a class of nonlinear systems, using static state feedback, is presented. This approach reduces the problem of determining the state feedback control law to that of solving a system of first-order partial differential equations. Based on these equations, two major issues are resolved: the necessary and sufficient conditions for the problem to have a solution and the general analytical expression for the feedback control law. Furthermore, the proposed approach is extended to solve the same problem via static output feedback.  相似文献   

7.
本文研究基于输出反馈的一类大型互联Holder连续非线性系统的全局实际镇定问题.通过构造每个子系统的状态观测器,并对观测器的状态作线性变换,得到分散输出反馈控制器.当输出反馈控制律作用于该系统时,闭环系统是全局实际稳定的.  相似文献   

8.
In this paper, a novel approach is proposed for generating multi-wing chaotic attractors from the fractional linear differential system via nonlinear state feedback controller equipped with a duality-symmetric multi-segment quadratic function. The main idea is to design a proper nonlinear state feedback controller by using four construction criterions from a fundamental fractional differential nominal linear system, so that the controlled fractional differential system can generate multi-wing chaotic attractors. It is the first time in the literature to report the multi-wing chaotic attractors from an uncoupled fractional differential system. Furthermore, some basic dynamical analysis and numerical simulations are also given, confirming the effectiveness of the proposed method.  相似文献   

9.
In this paper, we present a novel method for the robust control problem of uncertain nonlinear discrete-time linear systems with sector and slope restrictions. The nonlinear function considered in this paper is expressed as convex combinations of sector and slope bounds. Then the equality constraint is derived by using convex properties of the nonlinear function. A stabilization criterion for the existence of the state feedback controller is derived in terms of linear matrix inequalities (LMIs) by using Finsler’s lemma. The proposed method is demonstrated by a system with saturation nonlinearity.  相似文献   

10.
This paper shows the stabilization of the unstable periodic orbit of any given piecewise smooth system with linear and/or nonlinear characteristics. By utilizing the periodicity of the switching action, we construct the Poincaré mapping including all information of the original system. This mapping offers a first step toward extending a novel technique for controlling chaos based on the appropriate state feedback in piecewise smooth nonlinear systems. We also apply this approach to Rayleigh type oscillator described by the piecewise smooth nonlinear systems.  相似文献   

11.
This paper discusses stabilization and tracking control using linear matrix inequalities for a class of systems with Lipschitz nonlinearities. A nonlinear state feedback stabilization control is proposed for systems containing a more general case of Lipschitz nonlinearity. The main objective of the present study is to provide, for multi-input multi-output nonlinear systems, a tracking control approach based on nonlinear state feedback, which guarantees global asymptotic output and state tracking with zero tracking error in the steady state. Further, the tracking control is formulated for optimal disturbance rejection, using L2 gain reduction based performance criteria. The proposed methodologies are illustrated herein using two simulation examples of chaotic and unstable dynamical systems.  相似文献   

12.
State-dependent Riccati equation (SDRE) techniques are rapidly emerging as general design and synthesis methods of nonlinear feedback controllers and estimators for a broad class of nonlinear regulator problems. In essence, the SDRE approach involves mimicking standard linear quadratic regulator (LQR) formulation for linear systems. In particular, the technique consists of using direct parameterization to bring the nonlinear system to a linear structure having state-dependent coefficient matrices. Theoretical advances have been made regarding the nonlinear regulator problem and the asymptotic stability properties of the system with full state feedback. However, there have not been any attempts at the theory regarding the asymptotic convergence of the estimator and the compensated system. This paper addresses these two issues as well as discussing numerical methods for approximating the solution to the SDRE. The Taylor series numerical methods works only for a certain class of systems, namely with constant control coefficient matrices, and only in small regions. The interpolation numerical method can be applied globally to a much larger class of systems. Examples will be provided to illustrate the effectiveness and potential of the SDRE technique for the design of nonlinear compensator-based feedback controllers.  相似文献   

13.
This paper mainly studies the problem of designing a hybrid state feedback D-admissible controller for a class of linear and nonlinear singular systems. Based on the relationship between singular discrete systems and singular delta operator systems, several necessary and sufficient conditions for a linear singular delta operator system to be D-admissible (i.e. regular, causal and all finite poles lie in a prescribed circular region) with different representations are derived. Then, the existence conditions and explicit expressions of a desirable D-admissible controller are given by means of matrix inequalities and strict linear matrix inequalities, respectively. We further extend the obtained results to singular delta operator systems with Lipschitz nonlinear perturbations, and the design methods of hybrid controller are presented for the nonlinear case as well. Finally, numerical examples as well as simulations are provided to illustrate the effectiveness of the theoretical outcomes obtained in the paper.  相似文献   

14.
The attitude stabilization problem for a spinning satellite controlled by two small jets may be modelled as a four-dimensional, nonlinear control system, linear in the controls. The recent feedback linearization theorem of Hunt and Su may be applied to transform this system, via state feedback and a local coordinate change, to a pair of uncoupled, two-dimensional, linear systems. Feedback controls for the problem of time optimal transfer to the origin for these linear systems are explicitly calculated and then transformed to give explicit feedback controls for time optimal stabilization in the original nonlinear problem. The theory is illustrated by sample calculations.  相似文献   

15.
Linearization of a nonlinear feedback control system under nonlinear feedback is treated as a problem of equivalence-under the Lie pseudogroup of feedback transformations-of distributions on the product manifold of the state and control variables. The new feature of this paper is that it introduces the Cauchy characteristic sub-distributions of these distributions and their derived distributions. These Cauchy characteristic distributions are involutive and nested, hence define a Multifoliate Structure. A necessary condition for feedback equivalence of two nonlinear control systems is that these multifoliations be transformed under the feedback pseudogroup. For linear systems, this Cauchy characteristic multifoliate structuee is readily computed in terms of the (A, B)-matrix that defines the linear system. Assuming that the conditions for local feedback linearization are satisfied, the existence of a global feedback linearizing transformation is dependent on computing an element of the first cohomology group of the space with coefficients in the sheaf of groupoid of infinitesimal feedback automorphisms of the linear system. The theorem quoted above about the Cauchy characteristic multifoliations provides some information about this groupoid. It is computed explicitly and directly for control systems with one- or two-state dimensions. Finally, these Cauchy characteristic sub-distributions must inevitably play a role in the numerical or symbolic computational analysis of the Hunt-Su partial differential equations for the feedback-linearizing transformation.Senior Research Associate of the National Research Council at the Ames Research Center of NASA.  相似文献   

16.
一类不确定双线性系统的状态反馈Robust控制*   总被引:2,自引:0,他引:2  
本文针对一类含不确定性的双线性系统设计了一种线性状态反馈控制.在一定的条件下,利用改进的李雅普诺夫第二方法关于稳定性的理论,证明了系统的稳定性.并给出例子说明.  相似文献   

17.
The problem of the decentralized robust control is considered for a class of large-scale time-varying systems withdelayed state perturbations and external disturbances in the interconnections. Here, the upper bounds of the delayed stateperturbations and external disturbances in the interconnections are assumed to be unknown. Adaptation laws areproposed to estimate such unknown bounds; by making use of the updated values of the unknown bounds, decentralized linear and nonlinear memoryless robust state feedback controllers are constructed. Based on Lyapunov stability theoryand Lyapunov–Krasovskii functionals, as well as employing the proposed decentralized nonlinear robust state feedback controllers, it is shown that the solutions of the resulting adaptive closed-loop large-scale time-delay system can be guaranteed to be uniformly bounded and that the states converge uniformly and asymptotically to zero. It is also shown that the proposed decentralized linear robust state feedback controllers can guarantee the uniform ultimate boundedness of the resulting adaptive closed-loop large-scale time-delay system. Finally, a numerical example is given to demonstrate the validity of the results.  相似文献   

18.
In this paper, the stabilization problem of switched control systems with time delay is investigated for both linear and nonlinear cases. First, a new global stabilizability concept with respect to state feedback and switching law is given. Then, based on multiple Lyapunov functions and delay inequalities, the state feedback controller and the switching law are devised to make sure that the resulting closed-loop switched control systems with time delay are globally asymptotically stable and exponentially stable.  相似文献   

19.
对于非线性模糊系统控制器和观测器的分析和设计,提出一种统一方法。利用Delta域离散T—S模糊模型对非线性系统建模,并基于李雅普诺夫稳定性理论给出模糊状态反馈控制器和观测器的设计策略,将所得结果归结为求解一组线性矩阵不等式。同时结论表明:分离性原理对Delta算子T—S模糊系统仍然成立。所得结果可将现有关于连续和离散T—S模糊系统的相关结论统一于Delta算子框架内。  相似文献   

20.
This paper presents the control and synchronization of chaos by designing linear feedback controllers. The linear feedback control problem for nonlinear systems has been formulated under optimal control theory viewpoint. Asymptotic stability of the closed-loop nonlinear system is guaranteed by means of a Lyapunov function which can clearly be seen to be the solution of the Hamilton–Jacobi–Bellman equation thus guaranteeing both stability and optimality. The formulated theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations were provided in order to show the effectiveness of this method for the control of the chaotic Rössler system and synchronization of the hyperchaotic Rössler system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号