首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we present weighted Koch networks based on classic Koch networks. A new method is used to determine the average receiving time (ART), whose key step is to write the sum of mean first-passage times (MFPTs) for all nodes to absorption at the trap located at a hub node as a recursive relation. We show that the ART exhibits a sublinear or linear dependence on network order. Thus, the weighted Koch networks are more efficient than classic Koch networks in receiving information. Moreover, average weighted shortest path (AWSP) is calculated. In the infinite network order limit, the AWSP depends on the scaling factor. The weighted Koch network grows unbounded but with the logarithm of the network size, while the weighted shortest paths stay bounded.  相似文献   

2.
Previous work shows that the mean first-passage time (MFPT) for random walks to a given hub node (node with maximum degree) in uncorrelated random scale-free networks is closely related to the exponent γ of power-law degree distribution P(k) ~ k(-γ), which describes the extent of heterogeneity of scale-free network structure. However, extensive empirical research indicates that real networked systems also display ubiquitous degree correlations. In this paper, we address the trapping issue on the Koch networks, which is a special random walk with one trap fixed at a hub node. The Koch networks are power-law with the characteristic exponent γ in the range between 2 and 3, they are either assortative or disassortative. We calculate exactly the MFPT that is the average of first-passage time from all other nodes to the trap. The obtained explicit solution shows that in large networks the MFPT varies lineally with node number N, which is obviously independent of γ and is sharp contrast to the scaling behavior of MFPT observed for uncorrelated random scale-free networks, where γ influences qualitatively the MFPT of trapping problem.  相似文献   

3.
In this paper, by using two different techniques we derive an explicit formula for the mean first-passage time (MFPT) between any pair of nodes on a general undirected network, which is expressed in terms of eigenvalues and eigenvectors of an associated matrix similar to the transition matrix. We then apply the formula to derive a lower bound for the MFPT to arrive at a given node with the starting point chosen from the stationary distribution over the set of nodes. We show that for a correlated scale-free network of size N with a degree distribution P(d) ∼ d γ , the scaling of the lower bound is N 1−1/γ . Also, we provide a simple derivation for an eigentime identity. Our work leads to a comprehensive understanding of recent results about random walks on complex networks, especially on scale-free networks.  相似文献   

4.
In this paper, we propose a family of weighted extended Koch networks based on a class of extended Koch networks. They originate from a r-complete graph, and each node in each r-complete graph of current generation produces mr-complete graphs whose weighted edges are scaled by factor h in subsequent evolutionary step. We study the structural properties of these networks and random walks on them. In more detail, we calculate exactly the average weighted shortest path length (AWSP), average receiving time (ART) and average sending time (AST). Besides, the technique of resistor network is employed to uncover the relationship between ART and AST on networks with unit weight. In the infinite network order limit, the average weighted shortest path lengths stay bounded with growing network order (0 < h < 1). The closed form expression of ART shows that it exhibits a sub-linear dependence (0 < h < 1) or linear dependence (h = 1) on network order. On the contrary, the AST behaves super-linearly with the network order. Collectively, all the obtained results show that the efficiency of message transportation on weighted extended Koch networks has close relation to the network parameters h, m and r. All these findings could shed light on the structure and random walks of general weighted networks.  相似文献   

5.
Fractal dimension is central to understanding dynamical processes occurring on networks; however, the relation between fractal dimension and random walks on fractal scale-free networks has been rarely addressed, despite the fact that such networks are ubiquitous in real-life world. In this paper, we study the trapping problem on two families of networks. The first is deterministic, often called (x,y)-flowers; the other is random, which is a combination of (1,3)-flower and (2,4)-flower and thus called hybrid networks. The two network families display rich behavior as observed in various real systems, as well as some unique topological properties not shared by other networks. We derive analytically the average trapping time for random walks on both the (x,y)-flowers and the hybrid networks with an immobile trap positioned at an initial node, i.e., a hub node with the highest degree in the networks. Based on these analytical formulae, we show how the average trapping time scales with the network size. Comparing the obtained results, we further uncover that fractal dimension plays a decisive role in the behavior of average trapping time on fractal scale-free networks, i.e., the average trapping time decreases with an increasing fractal dimension.  相似文献   

6.
We study numerically the mean access times for random walks on hybrid disordered structures formed by embedding scale-free networks into regular lattices, considering different transition rates for steps across lattice bonds (F) and across network shortcuts (f). For fast shortcuts (f/F≫1) and low shortcut densities, traversal time data collapse onto a universal curve, while a crossover behavior that can be related to the percolation threshold of the scale-free network component is identified at higher shortcut densities, in analogy to similar observations reported recently in Newman-Watts small-world networks. Furthermore, we observe that random walk traversal times are larger for networks with a higher degree of inhomogeneity in their shortcut distribution, and we discuss access time distributions as functions of the initial and final node degrees. These findings are relevant, in particular, when considering the optimization of existing information networks by the addition of a small number of fast shortcut connections.  相似文献   

7.
In this paper,we study the scaling for the mean first-passage time(MFPT) of the random walks on a generalized Koch network with a trap.Through the network construction,where the initial state is transformed from a triangle to a polygon,we obtain the exact scaling for the MFPT.We show that the MFPT grows linearly with the number of nodes and the dimensions of the polygon in the large limit of the network order.In addition,we determine the exponents of scaling efficiency characterizing the random walks.Our results are the generalizations of those derived for the Koch network,which shed light on the analysis of random walks over various fractal networks.  相似文献   

8.
MEIFENG DAI  DANDAN YE  XINGYI LI  JIE HOU 《Pramana》2016,86(6):1173-1182
Motivated by the empirical observation in airport networks and metabolic networks, we introduce the model of the recursive weighted Koch networks created by the recursive division method. As a fundamental dynamical process, random walks have received considerable interest in the scientific community. Then, we study the recursive weighted Koch networks on random walk i.e., the walker, at each step, starting from its current node, moves uniformly to any of its neighbours. In order to study the model more conveniently, we use recursive division method again to calculate the sum of the mean weighted first-passing times for all nodes to absorption at the trap located in the merging node. It is showed that in a large network, the average weighted receiving time grows sublinearly with the network order.  相似文献   

9.
MEIFENG DAI  JIE LIU  FENG ZHU 《Pramana》2014,83(4):481-491
In this paper, we present trapping issues of weight-dependent walks on weighted hierarchical networks which are based on the classic scale-free hierarchical networks. Assuming that edge’s weight is used as local information by a random walker, we introduce a biased walk. The biased walk is that a walker, at each step, chooses one of its neighbours with a probability proportional to the weight of the edge. We focus on a particular case with the immobile trap positioned at the hub node which has the largest degree in the weighted hierarchical networks. Using a method based on generating functions, we determine explicitly the mean first-passage time (MFPT) for the trapping issue. Let parameter a (0 < a < 1) be the weight factor. We show that the efficiency of the trapping process depends on the parameter a; the smaller the value of a, the more efficient is the trapping process.  相似文献   

10.
Diffusive capture processes are known to be an effective method for information search on complex networks. The biased NN lions–lamb model provides quick search time by attracting random walkers to high degree nodes, where most capture events take place. The price of the efficiency is extreme traffic concentration on top hubs. We propose traffic load balancing provided by type specific biased random walks. For that we introduce a multi-type scale-free graph generation model, which embeds homophily structure into the network by utilizing type dependent random walks. We show analytically and with simulations that by augmenting the biased random walk method with a simple type homophily rule, we can alleviate the traffic concentration on high degree nodes by spreading the load proportionally between hubs with different types of our generated multi-type scale-free topologies.  相似文献   

11.
In this Letter, we develop an analytical approach which provides an explicit determination of mean first-passage times (MFPTs) for random walks in bounded domains for a wide class of transport processes. In particular, we derive for the first time explicit expressions of MFPTs for emblematic models of transport in complex media, such as diffusion on deterministic and random fractals. This approach relies on a scale-invariance hypothesis and a large volume expansion of the MFPT, which actually proves to be very accurate even for small system sizes as shown by numerical simulations. This explicit determination of MFPTs can be straightforwardly generalized to further useful first-passage observables such as occupation times and splitting probabilities.  相似文献   

12.
In many real-life networks, both the scale-free distribution of degree and small-world behavior are important features. There are many random or deterministic models of networks to simulate these features separately. However, there are few models that combine the scale-free effect and small-world behavior, especially in terms of deterministic versions. What is more, all the existing deterministic algorithms running in the iterative mode generate networks with only several discrete numbers of nodes. This contradicts the purpose of creating a deterministic network model on which we can simulate some dynamical processes as widely as possible. According to these facts, this paper proposes a deterministic network generation algorithm, which can not only generate deterministic networks following a scale-free distribution of degree and small-world behavior, but also produce networks with arbitrary number of nodes. Our scheme is based on a complete binary tree, and each newly generated leaf node is further linked to its full brother and one of its direct ancestors. Analytical computation and simulation results show that the average degree of such a proposed network is less than 5, the average clustering coefficient is high (larger than 0.5, even for a network of size 2 million) and the average shortest path length increases much more slowly than logarithmic growth for the majority of small-world network models.  相似文献   

13.
张静远  孙伟刚  陈关荣 《中国物理 B》2012,21(3):38901-038901
In this paper, we study the scaling for the mean first-passage time (MFPT) of the random walks on a generalized Koch network with a trap. Through the network construction, where the initial state is transformed from a triangle to a polygon, we obtain the exact scaling for the MFPT. We show that the MFPT grows linearly with the number of nodes and the dimensions of the polygon in the large limit of the network order. In addition, we determine the exponents of scaling efficiency characterizing the random walks. Our results are the generalizations of those derived for the Koch network, which shed light on the analysis of random walks over various fractal networks.  相似文献   

14.
We study an unbiased random walk on dual Sierpinski gaskets embedded in d-dimensional Euclidean spaces. We first determine the mean first-passage time (MFPT) between a particular pair of nodes based on the connection between the MFPTs and the effective resistance. Then, by using the Laplacian spectra, we evaluate analytically the global MFPT (GMFPT), i.e., MFPT between two nodes averaged over all node pairs. Concerning these two quantities, we obtain explicit solutions and show how they vary with the number of network nodes. Finally, we relate our results for the case of d = 2 to the well-known Hanoi Towers problem.  相似文献   

15.
Random walks on complex networks   总被引:3,自引:0,他引:3  
We investigate random walks on complex networks and derive an exact expression for the mean first-passage time (MFPT) between two nodes. We introduce for each node the random walk centrality C, which is the ratio between its coordination number and a characteristic relaxation time, and show that it determines essentially the MFPT. The centrality of a node determines the relative speed by which a node can receive and spread information over the network in a random process. Numerical simulations of an ensemble of random walkers moving on paradigmatic network models confirm this analytical prediction.  相似文献   

16.
万茜  周进  刘曾荣 《物理学报》2012,61(1):10203-010203
无标度性、小世界性、功能模块结构及度负关联性是大量生物网络共同的特征. 为了理解生物网络无标度性、小世界性和度负关联性的形成机制, 研究者已经提出了各种各样基于复制和变异的网络增长模型. 在本文中,我们从生物学的角度通过引入偏爱小复制原则及变异和非均匀的异源二聚作用构建了一个简单的蛋白质相互作用网络演化模型.数值模拟结果表明,该演化模型几乎可以再现现在实测结果所公认的蛋白质相互作用网络的性质:无标度性、小世界性、度负关联性和功能模块结构. 我们的演化模型对理解蛋白质相互作用网络演化过程中的可能机制提供了一定的帮助. 关键词: 蛋白质相互作用网络 偏爱小 非均匀的异源二聚作用 功能模块结构  相似文献   

17.
Min Lin  Nan Li   《Physica A》2010,389(3):160-480
We study numerically the knowledge innovation and diffusion process on four representative network models, such as regular networks, small-world networks, random networks and scale-free networks. The average knowledge stock level as a function of time is measured and the corresponding growth diffusion time, τ is defined and computed. On the four types of networks, the growth diffusion times all depend linearly on the network size N as τN, while the slope for scale-free network is minimal indicating the fastest growth and diffusion of knowledge. The calculated variance and spatial distribution of knowledge stock illustrate that optimal knowledge transfer performance is obtained on scale-free networks. We also investigate the transient pattern of knowledge diffusion on the four networks, and a qualitative explanation of this finding is proposed.  相似文献   

18.
吴治海  方华京 《中国物理快报》2008,25(10):3822-3825
We propose a new concept, two-step degree. Defining it as the capacity of a node of complex networks, we establish a novel capacity-load model of cascading failures of complex networks where the capacity of nodes decreases during the process of cascading failures. For scale-free networks, we find that the average two-step degree increases with the increase of the heterogeneity of the degree distribution, showing that the average two- step degree can be used for measuring the heterogeneity of the degree distribution of complex networks. In addition, under the condition that the average degree of a node is given, we can design a scale-free network with the optimal robustness to random failures by maximizing the average two-step degree.  相似文献   

19.
Cun-Lai Pu  Wen-Jiang Pei 《Physica A》2010,389(3):4699-594
In this article, we derive the first passage time (FPT) distribution and the mean first passage time (MFPT) of random walks from multiple sources on networks. On the basis of analysis and simulation, we find that the MFPT drops substantially when particle number increases at the first stage, and converges to the shortest distance between the sources and the destination when particle number tends to infinite. Given the fact that a Brownian particle from a high-degree node often needs a large number of steps to reach an expected low-degree node, which is the bottleneck for a single random walk, we propose a mixing search model to improve the efficiency of search processes by using random walks from multiple sources to continue the searches from high-degree nodes to destinations. We compare our model with the mixing navigation model proposed by Zhou on complex networks and find that our model converges much faster with lower hardware cost than Zhou’s model. Moreover, simulations on scale-free networks show that the search efficiency of our model is much higher than that of a single random walk, and comparable to that of multiple random walks which have much higher hardware cost than our model. Finally, we discuss the traffic cost of our model, and propose an absorption strategy for our model to recover the additional walkers in networks. Simulations indicate that this strategy reduces the traffic cost of our model effectively.  相似文献   

20.
Recently a great deal of effort has been made to explicitly determine the mean first-passage time (MFPT) between two nodes averaged over all pairs of nodes on a fractal network. In this paper, we first propose a family of generalized delayed recursive trees characterized by two parameters, where the existing nodes have a time delay to produce new nodes. We then study the MFPT of random walks on this kind of recursive tree and investigate the effect of the time delay on the MFPT. By relating random walks to electrical networks, we obtain an exact formula for the MFPT and verify it by numerical calculations. Based on the obtained results, we further show that the MFPT of delayed recursive trees is much shorter, implying that the efficiency of random walks is much higher compared with the non-delayed counterpart. Our study provides a deeper understanding of random walks on delayed fractal networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号