首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1996, Rovelli suggested a connection between black hole entropy and the area spectrum. Using this formalism and a theorem we prove in this paper, we briefly show the procedure to calculate the quantum corrections to the Bekenstein–Hawking entropy. One can do this by two steps. First, one can calculate the “naive” black hole degeneracy without the projection constraint (in case of the $U(1)$ symmetry reduced framework) or the $SU(2)$ invariant subspace constraint (in case of the fully $SU(2)$ framework). Second, then one can impose the projection constraint or the $SU(2)$ invariant subspace constraint, obtaining logarithmic corrections to the Bekenstein–Hawking entropy. In this paper, we focus on the first step and show that we obtain infinite relations between the area spectrum and the naive black hole degeneracy. Promoting the naive black hole degeneracy into its approximation, we obtain the full solution to the infinite relations.  相似文献   

2.
In this paper we study the behavior of the jet quenching parameter in a background metric with hyperscaling violation at finite temperature. The background metric is covariant under a generalized Lifshitz scaling symmetry with the dynamical exponent \(z\) and hyperscaling exponent \(\theta \) . We have evaluated the jet quenching parameter for a certain range of these parameters which are consistent with the Gubser bound conditions in terms of \(T\) , \(z\) , and \(\theta \) . The results are compared with those of experimental data as well as conformal and the non-conformal cases. Finally, we add a constant electric field to the background and find its effect on the jet quenching parameter.  相似文献   

3.
In this paper, we study the properties of the charged black hole surrounded by the quintessence. The solution space for the horizons for various values of the mass $M$ M , charge $Q$ Q , and the quintessence parameter $\alpha $ α are studied in detail. Special focus in given to the degenerate horizons: we obtain cold, ultracold and Nariai black holes which has similar topologies as for the Reissner–Nordstrom-de Sitter black holes. We also study the lukewarm black hole with the quintessence in this paper.  相似文献   

4.
To understand the effect of third order Lovelock gravity, $P$ $V$ criticality of topological AdS black holes in Lovelock–Born–Infeld gravity is investigated. The thermodynamics is further explored with some more extensions and in some more detail than the previous literature. A detailed analysis of the limit case $\beta \rightarrow \infty $ is performed for the seven-dimensional black holes. It is shown that, for the spherical topology, $P$ $V$ criticality exists for both the uncharged and the charged cases. Our results demonstrate again that the charge is not the indispensable condition of $P$ $V$ criticality. It may be attributed to the effect of higher derivative terms of the curvature because similar phenomenon was also found for Gauss–Bonnet black holes. For $k=0$ , there would be no $P$ $V$ criticality. Interesting findings occur in the case $k=-1$ , in which positive solutions of critical points are found for both the uncharged and the charged cases. However, the $P$ $v$ diagram is quite strange. To check whether these findings are physical, we give the analysis on the non-negative definiteness condition of the entropy. It is shown that, for any nontrivial value of $\alpha $ , the entropy is always positive for any specific volume $v$ . Since no $P$ $V$ criticality exists for $k=-1$ in Einstein gravity and Gauss–Bonnet gravity, we can relate our findings with the peculiar property of third order Lovelock gravity. The entropy in third order Lovelock gravity consists of extra terms which are absent in the Gauss–Bonnet black holes, which makes the critical points satisfy the constraint of non-negative definiteness condition of the entropy. We also check the Gibbs free energy graph and “swallow tail” behavior can be observed. Moreover, the effect of nonlinear electrodynamics is also included in our research.  相似文献   

5.
Charmonium rescattering effects in the M1 transition of $ \psi$ (2S) $ \rightarrow$ $ \gamma$ $ \eta_{c}^{}$ are investigated by modeling a $ \chi_{{cJ}}^{}$ or J/ $ \psi$ rescattering into a $ \eta_{c}^{}$ final state. The absorptive and dispersive part of the transition amplitudes for the rescattering loops of $ \eta$ $ \psi$ ( $ \gamma^{{\ast}}_{}$ ) and $ \gamma$ $ \chi$ ( $ \psi$ ) are separately evaluated. The numerical results show that the contribution from the $ \gamma$ $ \chi$ ( $ \psi$ ) rescattering process is negligible. Compared with the virtual D $ \bar{{D}}$ (D *) rescattering processes, the $ \eta$ $ \psi$ ( $ \gamma^{{\ast}}_{}$ ) process may be regarded as the next-leading order of the hadronic loop mechanism, which only offers the partial decay width of ~ 0.045 keV to the $ \psi$ (2S) $ \rightarrow$ $ \gamma$ $ \eta_{c}^{}$ .  相似文献   

6.
We review and update our results for $K\rightarrow \pi \pi $ decays and $K^0$ $\bar{K}^0$ mixing obtained by us in the 1980s within an analytic approximate approach based on the dual representation of QCD as a theory of weakly interacting mesons for large $N$ , where $N$ is the number of colors. In our analytic approach the Standard Model dynamics behind the enhancement of $\hbox {Re}A_0$ and suppression of $\hbox {Re}A_2$ , the so-called $\Delta I=1/2$ rule for $K\rightarrow \pi \pi $ decays, has a simple structure: the usual octet enhancement through the long but slow quark–gluon renormalization group evolution down to the scales $\mathcal{O}(1\, {\hbox { GeV}})$ is continued as a short but fast meson evolution down to zero momentum scales at which the factorization of hadronic matrix elements is at work. The inclusion of lowest-lying vector meson contributions in addition to the pseudoscalar ones and of Wilson coefficients in a momentum scheme improves significantly the matching between quark–gluon and meson evolutions. In particular, the anomalous dimension matrix governing the meson evolution exhibits the structure of the known anomalous dimension matrix in the quark–gluon evolution. While this physical picture did not yet emerge from lattice simulations, the recent results on $\hbox {Re}A_2$ and $\hbox {Re}A_0$ from the RBC-UKQCD collaboration give support for its correctness. In particular, the signs of the two main contractions found numerically by these authors follow uniquely from our analytic approach. Though the current–current operators dominate the $\Delta I=1/2$ rule, working with matching scales $\mathcal{O}(1 \, {\hbox { GeV}})$ we find that the presence of QCD-penguin operator $Q_6$ is required to obtain satisfactory result for $\hbox {Re}A_0$ . At NLO in $1/N$ we obtain $R=\hbox {Re}A_0/\hbox {Re}A_2= 16.0\pm 1.5$ which amounts to an order of magnitude enhancement over the strict large $N$ limit value $\sqrt{2}$ . We also update our results for the parameter $\hat{B}_K$ , finding $\hat{B}_K=0.73\pm 0.02$ . The smallness of $1/N$ corrections to the large $N$ value $\hat{B}_K=3/4$ results within our approach from an approximate cancelation between pseudoscalar and vector meson one-loop contributions. We also summarize the status of $\Delta M_K$ in this approach.  相似文献   

7.
We consider N Brownian particles moving on a line starting from initial positions \(\mathbf{{u}}\equiv \{u_1,u_2,\ldots u_N\}\) such that \(0 . Their motion gets stopped at time \(t_s\) when either two of them collide or when the particle closest to the origin hits the origin for the first time. For \(N=2\) , we study the probability distribution function \(p_1(m|\mathbf{{u}})\) and \(p_2(m|\mathbf{{u}})\) of the maximal distance travelled by the \(1^{\text {st}}\) and \(2^{\text {nd}}\) walker till \(t_s\) . For general N particles with identical diffusion constants \(D\) , we show that the probability distribution \(p_N(m|\mathbf{u})\) of the global maximum \(m_N\) , has a power law tail \(p_i(m|\mathbf{{u}}) \sim {N^2B_N\mathcal {F}_{N}(\mathbf{u})}/{m^{\nu _N}}\) with exponent \(\nu _N =N^2+1\) . We obtain explicit expressions of the function \(\mathcal {F}_{N}(\mathbf{u})\) and of the N dependent amplitude \(B_N\) which we also analyze for large N using techniques from random matrix theory. We verify our analytical results through direct numerical simulations.  相似文献   

8.
9.
In this paper, we introduce the bulk viscosity in the formalism of modified gravity theory in which the gravitational action contains a general function \(f(R,T)\) , where \(R\) and \(T\) denote the curvature scalar and the trace of the energy–momentum tensor, respectively, within the framework of a flat Friedmann–Robertson–Walker model. As an equation of state for a prefect fluid, we take \(p=(\gamma -1)\rho \) , where \(0 \le \gamma \le 2\) and a viscous term as a bulk viscosity due to the isotropic model, of the form \(\zeta =\zeta _{0}+\zeta _{1}H\) , where \(\zeta _{0}\) and \(\zeta _{1}\) are constants, and \(H\) is the Hubble parameter. The exact non-singular solutions to the corresponding field equations are obtained with non-viscous and viscous fluids, respectively, by assuming a simplest particular model of the form of \(f(R,T) = R+2f(T)\) , where \(f(T)=\alpha T\) ( \(\alpha \) is a constant). A big-rip singularity is also observed for \(\gamma <0\) at a finite value of cosmic time under certain constraints. We study all possible scenarios with the possible positive and negative ranges of \(\alpha \) to analyze the expansion history of the universe. It is observed that the universe accelerates or exhibits a transition from a decelerated phase to an accelerated phase under certain constraints of \(\zeta _0\) and \(\zeta _1\) . We compare the viscous models with the non-viscous one through the graph plotted between the scale factor and cosmic time and find that the bulk viscosity plays a major role in the expansion of the universe. A similar graph is plotted for the deceleration parameter with non-viscous and viscous fluids and we find a transition from decelerated to accelerated phase with some form of bulk viscosity.  相似文献   

10.
Very recently, a new scheme to quantize the horizon area of a black hole has been proposed by Zeng and Liu et?al. In this paper, we further apply the analysis to investigate area spectrum of three dimensional BTZ black hole with the cosmological constant ${\Lambda=-1/l^{2}}$ . The results show that the area spectrum and entropy spectrum are independent of the cosmological constant. The area spectrum of the black hole is ${\Delta A=8\pi l_{P}^{2}}$ , which confirms the initial proposal of Bekenstein that the area spectrum is independent of the black hole parameters and the spacing is ${8\pi l_{P}^{2}}$ . This result also confirms the speculation of Maggiore that the periodicity of a black hole may be the origin of the area quantization. In addition, for the rotating and non-rotating BTZ black holes, we obtain the same entropy spectrum ${\triangle S=2\pi}$ , which is consistent with the result for other black holes. This implies that the entropy spectrum is more fundamental than the area spectrum.  相似文献   

11.
We consider holographic superconductors in a rotating black string spacetime. In view of the mandatory introduction of the \(A_\varphi \) component of the vector potential we are left with three equations to be solved. Their solutions show that the rotation parameter \(a\) influences the critical temperature \(T_\mathrm{c}\) and the conductivity \(\sigma \) in a simple but non-trivial way.  相似文献   

12.
A gravitational $D$ -dimensional model with $l$ scalar fields and several forms is considered. When a cosmological-type diagonal metric is chosen, an electromagnetic composite brane ansatz is adopted and certain restrictions on the branes are imposed; the conformally covariant Wheeler–DeWitt (WDW) equation for the model is studied. Under certain restrictions asymptotic solutions to WDW equation are found in the limit of the formation of the billiard walls which reduce the problem to the so-called quantum billiard on the $(D+ l -2)$ -dimensional Lobachevsky space. Two examples of quantum billiards are considered. The first one deals with $9$ -dimensional quantum billiard for $D = 11$ model with $330$ four-forms which mimic space-like $M2$ - and $M5$ -branes of $D=11$ supergravity. The second one deals with the $9$ -dimensional quantum billiard for $D =10$ gravitational model with one scalar field, $210$ four-forms and $120$ three-forms which mimic space-like $D2$ -, $D4$ -, $FS1$ - and $NS5$ -branes in $D = 10$ $II A$ supergravity. It is shown that in both examples wave functions vanish in the limit of the formation of the billiard walls (i.e. we get a quantum resolution of the singularity for $11D$ model) but magnetic branes could not be neglected in calculations of quantum asymptotic solutions while they are irrelevant for classical oscillating behavior when all $120$ electric branes are present.  相似文献   

13.
The bond propagation and site propagation algorithms are extended to the two-dimensional (2D) Ising model with a surface field. With these algorithms we can calculate the free energy, internal energy, specific heat, magnetization, correlation functions, surface magnetization, surface susceptibility and surface correlations. The method can handle continuous and discrete bond and surface-field disorder and is especially efficient in the case of bond or site dilution. To test these algorithms, we study the wetting transition of the 2D Ising model, which was solved exactly by Abraham. We can locate the transition point accurately with a relative error of \(10^{-8}\) . We carry out the calculation of the specific heat and surface susceptibility on lattices with sizes up to \(200^2 \times 200\) . The results show that a finite jump develops in the specific heat and surface susceptibility at the transition point as the lattice size increases. For lattice size \(320^2 \times 320\) the parallel correlation length exponent is \(1.86\) , while Abraham’s exact result is \(2.0\) . The perpendicular correlation length exponent for lattice size \(160^2\times 160\) is \(1.05\) , whereas its exact value is \(1.0\) .  相似文献   

14.
The primary goal of KamLAND is a search for the oscillation of \({\bar{\nu }}_\mathrm{e}\) ’s emitted from distant power reactors. The long baseline, typically 180 km, enables KamLAND to address the oscillation solution of the “solar neutrino problem” with \({\bar{\nu }}_{e} \) ’s under laboratory conditions. KamLAND found fewer reactor \({\bar{\nu }}_{e} \) events than expected from standard assumptions about \(\overline{\nu }_e\) propagation at more than 9 \(\sigma \) confidence level (C.L.). The observed energy spectrum disagrees with the expected spectral shape at more than 5 \(\sigma \) C.L., and prefers the distortion from neutrino oscillation effects. A three-flavor oscillation analysis of the data from KamLAND and KamLAND + solar neutrino experiments with CPT invariance, yields \(\Delta m_{21}^2 \) = [ \(7.54_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) , \(7.53_{-0.18}^{+0.19} \times \) 10 \(^{-5}\) eV \(^{2}\) ], tan \(^{2}\theta _{12}\) = [ \(0.481_{-0.080}^{+0.092} \) , \(0.437_{-0.026}^{+0.029} \) ], and sin \(^{2}\theta _{13}\) = [ \(0.010_{-0.034}^{+0.033} \) , \(0.023_{-0.015}^{+0.015} \) ]. All solutions to the solar neutrino problem except for the large mixing angle region are excluded. KamLAND also demonstrated almost two cycles of the periodic feature expected from neutrino oscillation effects. KamLAND performed the first experimental study of antineutrinos from the Earth’s interior so-called geoneutrinos (geo \({\bar{\nu }}_{e} \) ’s), and succeeded in detecting geo \({\bar{\nu }}_{e} \) ’s produced by the decays of \(^{238}\) U and \(^{232}\) Th within the Earth. Assuming a chondritic Th/U mass ratio, we obtain \(116_{-27}^{+28} {\bar{\nu }}_{e}\) events from \(^{238}\) U and \(^{232}\) Th, corresponding a geo \({\bar{\nu }}_{e}\) flux of \(3.4_{-0.8}^{+0.8}\times \) 10 \(^{6}\) cm \(^{-2}\)  s \(^{-1}\) at the KamLAND location. We evaluate various bulk silicate Earth composition models using the observed geo \({\bar{\nu }}_{e} \) rate.  相似文献   

15.
Recent numerical studies of the coupled Einstein–Klein–Gordon system in a cavity have provided compelling evidence that confined scalar fields generically collapse to form black holes. Motivated by this intriguing discovery, we here use analytical tools in order to study the characteristic resonance spectra of the confined fields. These discrete resonant frequencies are expected to dominate the late-time dynamics of the coupled black-hole-field-cage system. We consider caged Reissner–Nordström black holes whose confining mirrors are placed in the near-horizon region \(x_{\text {m}}\equiv (r_{\text {m}}-r_+)/r_+\ll \tau \equiv (r_+-r_-)/r_+\) (here \(r_{\text {m}}\) is the radius of the confining mirror and \(r_{\pm }\) are the radii of the black-hole horizons). We obtain a simple analytical expression for the fundamental quasinormal resonances of the coupled black-hole-field-cage system: \(\omega _n=-i2\pi T_{\text {BH}} \cdot n\left[ 1+O(x^n_{\text {m}}/\tau ^n)\right] \) , where \(T_{\text {BH}}\) is the temperature of the caged black hole and \(n=1,2,3,...\) is the resonance parameter.  相似文献   

16.
Magnetism in Cu-doped, Cu \(\rm _{Si}\) –V \(\rm _{Si}\) codoped, or Cu \(\rm _{Si}\) –V \(\rm _{C}\) codoped 6H-SiC are investigated using the first principle. The total density of states for the ferromagnetic Cu \(\rm _{Si}\) at doping concentration of 0.926 at. \(\%\) shows half-metallic behavior, which leads to the total magnetic moment of 2.84  \(\rm \mu _{B}\) per supercell. The total magnetic moment increases with increasing Cu content. The long-range ferromagnetic interaction between Cu atoms can be attributed to the C-mediated double exchange through the strong \(3d\) ? \(2p\) interaction between Cu and neighboring C ones. It is important to note that both V \(\rm _{Si}\) and V \(\rm _{C}\) play a negative role in ferromagnetic coupling between Cu ions. So, to obtain a larger magnetic moment from Cu-doped 6H–SiC, we should try to avoid the appearance of V \(\rm _{Si}\) and V \(\rm _{C}\) during the process of sample preparation. Our theoretical calculations give a valuable insight on how to get a large magnetic moment from Cu-doped 6H–SiC.  相似文献   

17.
We consider the Ising model on \(\mathbb Z\times \mathbb Z\) where on each horizontal line \(\{(x,i), x\in \mathbb Z\}\) , called “layer”, the interaction is given by a ferromagnetic Kac potential with coupling strength \(J_{ \gamma }(x,y)={ \gamma }J({ \gamma }(x-y))\) , where \(J(\cdot )\) is smooth and has compact support; we then add a nearest neighbor ferromagnetic vertical interaction of strength \({ \gamma }^{A}\) , where \(A\ge 2\) is fixed, and prove that for any \(\beta \) larger than the mean field critical value there is a phase transition for all \({ \gamma }\) small enough.  相似文献   

18.
The anisotropic quantum Heisenberg model with Curie-Weiss-type interactions is studied analytically in several variants of the microcanonical ensemble. (Non)equivalence of microcanonical and canonical ensembles is investigated by studying the concavity properties of entropies. The microcanonical entropy \(s(e,\varvec{m})\) is obtained as a function of the energy \(e\) and the magnetization vector \({\varvec{m}}\) in the thermodynamic limit. Since, for this model, \(e\) is uniquely determined by \({\varvec{m}}\) , the same information can be encoded either in \(s(\varvec{m})\) or \(s(e,m_1,m_2)\) . Although these two entropies correspond to the same physical setting of fixed \(e\) and \({\varvec{m}}\) , their concavity properties differ. The entropy \(s_{{\varvec{h}}}(u)\) , describing the model at fixed total energy \(u\) and in a homogeneous external magnetic field \({\varvec{h}}\) of arbitrary direction, is obtained by reduction from the nonconcave entropy \(s(e,m_1,m_2)\) . In doing so, concavity, and therefore equivalence of ensembles, is restored. \(s_{{\varvec{h}}}(u)\) has nonanalyticities on surfaces of co-dimension 1 in the \((u,\varvec{h})\) -space. Projecting these surfaces into lower-dimensional phase diagrams, we observe that the resulting phase transition lines are situated in the positive-temperature region for some parameter values, and in the negative-temperature region for others. In the canonical setting of a system coupled to a heat bath of positive temperatures, the nonanalyticities in the microcanonical negative-temperature region cannot be observed, and this leads to a situation of effective nonequivalence even when formal equivalence holds.  相似文献   

19.
We study the phenomenon of “crowding” near the largest eigenvalue \(\lambda _\mathrm{max}\) of random \(N \times N\) matrices belonging to the Gaussian Unitary Ensemble of random matrix theory. We focus on two distinct quantities: (i) the density of states (DOS) near \(\lambda _\mathrm{max}\) , \(\rho _\mathrm{DOS}(r,N)\) , which is the average density of eigenvalues located at a distance \(r\) from \(\lambda _\mathrm{max}\) and (ii) the probability density function of the gap between the first two largest eigenvalues, \(p_\mathrm{GAP}(r,N)\) . In the edge scaling limit where \(r = \mathcal{O}(N^{-1/6})\) , which is described by a double scaling limit of a system of unconventional orthogonal polynomials, we show that \(\rho _\mathrm{DOS}(r,N)\) and \(p_\mathrm{GAP}(r,N)\) are characterized by scaling functions which can be expressed in terms of the solution of a Lax pair associated to the Painlevé XXXIV equation. This provides an alternative and simpler expression for the gap distribution, which was recently studied by Witte et al. in Nonlinearity 26:1799, 2013. Our expressions allow to obtain precise asymptotic behaviors of these scaling functions both for small and large arguments.  相似文献   

20.
We consider a version of directed bond percolation on the triangular lattice such that vertical edges are directed upward with probability $y$ , diagonal edges are directed from lower-left to upper-right or lower-right to upper-left with probability $d$ , and horizontal edges are directed rightward with probabilities $x$ and one in alternate rows. Let $\tau (M,N)$ be the probability that there is at least one connected-directed path of occupied edges from $(0,0)$ to $(M,N)$ . For each $x \in [0,1]$ , $y \in [0,1)$ , $d \in [0,1)$ but $(1-y)(1-d) \ne 1$ and aspect ratio $\alpha =M/N$ fixed for the triangular lattice with diagonal edges from lower-left to upper-right, we show that there is an $\alpha _c = (d-y-dy)/[2(d+y-dy)] + [1-(1-d)^2(1-y)^2x]/[2(d+y-dy)^2]$ such that as $N \rightarrow \infty $ , $\tau (M,N)$ is $1$ , $0$ and $1/2$ for $\alpha > \alpha _c$ , $\alpha < \alpha _c$ and $\alpha =\alpha _c$ , respectively. A corresponding result is obtained for the triangular lattice with diagonal edges from lower-right to upper-left. We also investigate the rate of convergence of $\tau (M,N)$ and the asymptotic behavior of $\tau (M_N^-,N)$ and $\tau (M_N^+ ,N)$ where $M_N^-/N\uparrow \alpha _c$ and $M_N^+/N\downarrow \alpha _c$ as $N\uparrow \infty $ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号