首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

2.
Let B be a semigroup with the additional relation $$\begin{gathered} xx \Rightarrow x \hfill \\ xyz \Rightarrow xz if x \mathop {CI}\limits_ = z and xy\mathop {CI}\limits_ = z \hfill \\ \end{gathered} $$ B is called aband or anidempotent semigroup [3]. It is shown in this paper that the replacement rules (rewrites) resulting from the axiom of idempotence: $$\forall w \in B.ww = w$$ can be replaced by theNoetherian, confluent, conditional rewrites (i. e. a terminating replacement system having the Church-Rosser-Property): $$\begin{gathered} xx \Rightarrow x \hfill \\ x \Rightarrow xx \hfill \\ \end{gathered} $$ These rewrites are used to obtain a unique normal form for words in B and hence are the basis for a decision procedure for word equality in B. The proof techniques are based uponterm rewriting systems [7] rather than the usual algebraic approach. Alternative and simpler proofs of a result reported earlier by Green and Rees [4] and Gerhardt [6] have been obtained.  相似文献   

3.
A maximum principle is obtained for control problems involving a constant time lag τ in both the control and state variables. The problem considered is that of minimizing $$I(x) = \int_{t^0 }^{t^1 } {L (t,x(t), x(t - \tau ), u(t), u(t - \tau )) dt} $$ subject to the constraints 1 $$\begin{gathered} \dot x(t) = f(t,x(t),x(t - \tau ),u(t),u(t - \tau )), \hfill \\ x(t) = \phi (t), u(t) = \eta (t), t^0 - \tau \leqslant t \leqslant t^0 , \hfill \\ \end{gathered} $$ 1 $$\psi _\alpha (t,x(t),x(t - \tau )) \leqslant 0,\alpha = 1, \ldots ,m,$$ 1 $$x^i (t^1 ) = X^i ,i = 1, \ldots ,n$$ . The results are obtained using the method of Hestenes.  相似文献   

4.
In the paper, we obtain the existence of positive solutions and establish a corresponding iterative scheme for BVPs $$\left\{ \begin{gathered} (\phi _p (u\prime ))\prime + q(t)f(t, u) = 0,0< t< 1, \hfill \\ u(0) - B(u\prime (\eta )) = 0, u\prime (1) = 0 \hfill \\ \end{gathered} \right.$$ and $$\left\{ \begin{gathered} (\phi _p (u\prime ))\prime + q(t)f(t, u) = 0,0< t< 1, \hfill \\ u\prime (0) = 0, u(1) + B(u\prime (\eta )) = 0 \hfill \\ \end{gathered} \right.$$ The main tool is the monotone iterative technique. Here, the coefficientq(t) may be singular att = 0,1.  相似文献   

5.
The final step in the mathematical solution of many problems in mathematical physics and engineering is the solution of a linear, two-point boundary-value problem such as $$\begin{gathered} \ddot u - q(t)u = - g(t), 0< t< x \hfill \\ (0) = 0, \dot u(x) = 0 \hfill \\ \end{gathered} $$ Such problems frequently arise in a variational context. In terms of the Green's functionG, the solution is $$u(t) = \int_0^x {G(t, y, x)g(y) dy} $$ It is shown that the Green's function may be represented in the form $$G(t,y,x) = m(t,y) - \int_y^x {q(s)m(t, s) m(y, s)} ds, 0< t< y< x$$ wherem satisfies the Fredholm integral equation $$m(t,x) = k(t,x) - \int_0^x k (t,y) q(y) m(y, x) dy, 0< t< x$$ and the kernelk is $$k(t, y) = min(t, y)$$   相似文献   

6.
LetN be a sufficiently large even integer and $$\begin{gathered} q \geqslant 1, (l_i ,q) = 1 (i = 1, 2), \hfill \\ l_1 + l_2 \equiv N(\bmod q). \hfill \\ \end{gathered} $$ . It is proved that the equation $$N = p + P_2 ,p \equiv l_1 (\bmod q), P_2 \equiv l_2 (\bmod q)$$ has infinitely many solutions for almost all $q \leqslant N^{\frac{1}{{37}}} $ , wherep is a prime andP 2 is an almost prime with at most two prime factors.  相似文献   

7.
The Cauchy problem for the Laplace operator $$\sum\limits_{k = 1}^\infty {\frac{{\left| {\hat f(n_k )} \right|}}{k}} \leqslant const\left\| f \right\|1$$ is modified by replacing the Laplace equation by an asymptotic estimate of the form $$\begin{gathered} \Delta u(x,y) = 0, \hfill \\ u(x,0) = f(x),\frac{{\partial u}}{{\partial y}}(x,0) = g(x) \hfill \\ \end{gathered} $$ with a given majoranth, satisfyingh(+0)=0. Thisasymptotic Cauchy problem only requires that the Laplacian decay to zero at the initial submanifold. It turns out that this problem has a solution for smooth enough Cauchy dataf, g, and this smoothness is strictly controlled byh. This gives a new approach to the study of smooth function spaces and harmonic functions with growth restrictions. As an application, a Levinson-type normality theorem for harmonic functions is proved.  相似文献   

8.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

9.
Continuous dependence for integrodifferential equation with infinite delay $$\begin{gathered} \dot x = h(t,x) + \int_{ \sim \infty }^t {q(t,s,x(s))ds} + F(t,x(t),Sx(t))t \geqslant 0 \hfill \\ x(t) = \Phi (t) \hfill \\ \end{gathered} $$ where \(Sx(t) = \int_{ \sim \infty }^t {k(t,s,x(s))} ds\) is studied under the assumption of existence of unique solution.  相似文献   

10.
Пустьw(х)∈L[-1, +1] — неотрица тельная функция така я, что $$\frac{{\log ^ + \frac{1}{{w(x)}}}}{{\sqrt {1 - x^2 } }} \in L[ - 1, + 1]$$ и пусть {(р n (х)} — много члены, ортогональные и нормированные с весо мw(x). Мы доказываем следующие две теорем ы, являющиеся обобщен ием одного известного результа та Н. Винера. I. Для каждого δ, 0<δ<1, суще ствует числоB=B(δ, w) тако е, что если $$f_N (x) = \sum\limits_{j = 1}^N {a_j p_{v_j } (x)} $$ причем выполнено сле дующее условие лакун арности $$\begin{gathered} v_{j + 1} - v_j \geqq B(\delta ,w) (j = 1,2,...,N - 1), \hfill \\ v_1 \geqq B(\delta ,w) \hfill \\ \end{gathered} $$ , то для некоторого С(δ, w) и всехh и δ, для которых $$ - 1 \leqq h - \delta< h + \delta \leqq + 1$$ , имеет место неравенс тво $$\int\limits_{ - 1}^1 {|f_N (x)|^2 w(x)dx \leqq C(\delta ,w)} \int\limits_{h - \delta }^{h + \delta } {|f_N (x)|^2 w(x)dx} $$ каковы бы ни былиa j ,N и h. II. Если формальный ряд $$\sum\limits_{j = 1}^\infty {b_j p_{\mu _j } (x)} $$ удовлетворяет услов ию лакунарности μj+1j→∞ и суммируем, например, м етодом Абеля на произвольно малом отрезке [а, Ь] ?[0,1] к ф ункцииf(x) такой, что \(f(x)\sqrt {w(x)} \in L_2 [a,b]\) , то $$\sum\limits_j {|b_j |^2< \infty } $$ Теорема I — это первый ш аг в направлении проб лемы типа Мюнтца-Саса о замкнут ости подпоследовательно сти pvj(x)} последовател ьности {рn(х)} на отрезке [а, Ь] в метрике С[а, Ь] (см. теорему II стать и).  相似文献   

11.
A polyhedral functionlp(Δn) (f). interpolating a function f, defined on a polygon Φ, is defined by a set of interpolating nodes Δn ?Φ and a partition P(Δn) of the polygon Φ into triangles with vertices at the points of Δn. In this article we will compute for convex moduli of continuity the quatities $$\begin{gathered} E (H_\Phi ^\omega ; P (\Delta _n )) = sup || f - l_{p(\Delta _n )} (f)||, \hfill \\ f \in H_\Phi ^\omega \hfill \\ \end{gathered} $$ and also give an asymptotic estimate of the quantities $$\begin{gathered} E_n (H_\Phi ^\omega ) = infinf E (H_\Phi ^\omega ; P (\Delta _n )). \hfill \\ \Delta _n P(\Delta _n ) \hfill \\ \end{gathered} $$   相似文献   

12.
modm. Ifm is natural,a an integer with (a, m)=1 put $$\begin{gathered} {}^om(a): = min\{ h\left| {h \in \mathbb{N},} \right.a^h \equiv 1(modm)\} , \hfill \\ \psi (m): = \max \{ o_m (a)\left| a \right. \in \mathbb{Z},(a,m) = 1\} , \hfill \\ g(m): = \min \{ a\left| {a \in \mathbb{N},(a,m) = 1,o_m (a) = } \right.\psi (m)\} . \hfill \\ \end{gathered} $$ Form prime,g(m) is the least natural primitive root modm. We establish the estimation $$\sum\limits_{m< x} {g(m)<< x^{1 + \varepsilon } .} $$   相似文献   

13.
In this paper we investigate the integrability of certain radial basis functions. From the following forms of function σ, $$\varphi \left( r \right) = \left\{ \begin{gathered} \sum\limits_{k = 0}^{d + [a]} {c_k r^{a - k} + g(r) } r > A, \hfill \\ \sum\limits_{k = 0}^{d + [a]} {c_k r^{a - k} \ln r + g(r), } r > A. \hfill \\ \end{gathered} \right.$$ where A≧0 and $g \circ || \circ || \in L^1 \left( {R^d } \right)$ , we construct the function $$\psi (t) = \sum\limits_{j \in J} {a_j \varphi \left( {||t - t_j ||} \right),} $$ where J is a finite index set, $\left\{ {a_j } \right\}_{j \in J} \subseteq R$ and $\left\{ {t_j } \right\}_{j \in J} \subseteq R^d $ . We show that if $\hat \psi $ is continuous at the origin, the ψ is integrable in Rd.  相似文献   

14.
LetΛ 1(Ω) be the first eigenvalue of the vector-valued problem $$\begin{gathered} \Delta u + \alpha grad div u + \Delta u = 0 in \Omega , \hfill \\ u = 0 in \partial \Omega , \hfill \\ \end{gathered} $$ , withα>0. Letλ 1(Ω) be the first eigenvalue of the scalar problem $$\begin{gathered} \Delta u + \lambda u = 0 in \Omega , \hfill \\ u = 0 on \partial \Omega . \hfill \\ \end{gathered} $$ . The paper contains a proof of the inequality $$\left( {1 + \frac{\alpha }{n}} \right)\lambda _1 \left( \Omega \right) > \Lambda _1 \left( \Omega \right) > \left( \Omega \right)$$ and improves recent estimates of Sprössig [15] and Levine and Protter [11]. Moreover we show, ifΩ is a ball, that an eigensolution u1, associated withΛ 1(Ω) is not unique and that the eigensolutions for this and higher eigenvalues are never rotationally invariant. Finally we calculate some eigensolutions explicitly.  相似文献   

15.
We give a simple proof of a mean value theorem of I. M. Vinogradov in the following form. Suppose P, n, k, τ are integers, P≥1, n≥2, k≥n (τ+1), τ≥0. Put $$J_{k,n} (P) = \int_0^1 \cdots \int_0^1 {\left| {\sum\nolimits_{x = 1}^P {e^{2\pi i(a_1 x + \cdots + a_n x^n )} } } \right|^{2k} da_1 \ldots da_n .} $$ Then $$J_{k,n} \leqslant n!k^{2n\tau } n^{\sigma n^2 u} \cdot 2^{2n^2 \tau } P^{2k - \Delta } ,$$ where $$\begin{gathered} u = u_\tau = min(n + 1,\tau ), \hfill \\ \Delta = \Delta _\tau = n(n + 1)/2 - (1 - 1/n)^{\tau + 1} n^2 /2. \hfill \\ \end{gathered} $$   相似文献   

16.
Пусть Λ=(λn) — возрастаю щая к+∞ последователь ность неотрицательных чис ел, λ0=0, а S+(Λ) — класс абсолют но сходящихся в С рядо в Дирихле вида $$F\left( z \right) = \mathop \sum \limits_{k = 0}^\infty a_k \exp \left\{ {z\lambda _k } \right\},$$ где a0=1 и ak>0 (k∈N). Положим $$\begin{gathered} S_n \left( z \right) = \mathop \sum \limits_{k = 1}^\infty a_k \exp \left\{ {z\lambda _k } \right\}, \hfill \\ \sigma _n \left( F \right) = \max \left\{ {\frac{1}{{S_n \left( x \right)}} - \frac{1}{{F\left( x \right)}}:x \in R} \right\}. \hfill \\ \end{gathered} $$ Доказано, что для того, чтобы для любой функц ии F∈S+(Λ) выполнялось равенст во $$\mathop {\lim \sup }\limits_{n \to \infty } \frac{1}{{\ln n}}\ln \frac{1}{{\sigma _n \left( F \right)}} = + \infty ,$$ необходимо и достато чно, чтобы $$\mathop \sum \limits_{n = 1}^\infty \frac{1}{{n\lambda _n }}< + \infty .$$ Аналогичные результ ы получены для различ ных подклассов классаS + (Λ), определяемых условиями на убывани е коэффициентова n.  相似文献   

17.
A thorough investigation of the systemd~2y(x):dx~2 p(x)y(x)=0with periodic impulse coefficientsp(x)={1,0≤xx_0>0) -η, x_0≤x<2π(η>0)p(x)=p(x 2π),-∞相似文献   

18.
This article mainly consists of two parts. In the first part the initial value problem (IVP) of the semilinear heat equation $$\begin{gathered} \partial _t u - \Delta u = \left| u \right|^{k - 1} u, on \mathbb{R}^n x(0,\infty ), k \geqslant 2 \hfill \\ u(x,0) = u_0 (x), x \in \mathbb{R}^n \hfill \\ \end{gathered} $$ with initial data in $\dot L_{r,p} $ is studied. We prove the well-posedness when $$1< p< \infty , \frac{2}{{k(k - 1)}}< \frac{n}{p} \leqslant \frac{2}{{k - 1}}, and r =< \frac{n}{p} - \frac{2}{{k - 1}}( \leqslant 0)$$ and construct non-unique solutions for $$1< p< \frac{{n(k - 1)}}{2}< k + 1, and r< \frac{n}{p} - \frac{2}{{k - 1}}.$$ In the second part the well-posedness of the avove IVP for k=2 with μ0?H s (? n ) is proved if $$ - 1< s, for n = 1, \frac{n}{2} - 2< s, for n \geqslant 2.$$ and this result is then extended for more general nonlinear terms and initial data. By taking special values of r, p, s, and u0, these well-posedness results reduce to some of those previously obtained by other authors [4, 14].  相似文献   

19.
We consider a class of planar self-affine tiles T = M-1 a∈D(T + a) generated by an expanding integral matrix M and a collinear digit set D as follows:M =(0-B 1-A),D = {(00),...,(|B|0-1)}.We give a parametrization S1 →T of the boundary of T with the following standard properties.It is H¨older continuous and associated with a sequence of simple closed polygonal approximations whose vertices lie on T and have algebraic preimages.We derive a new proof that T is homeomorphic to a disk if and only if 2|A| |B + 2|.  相似文献   

20.
In the present paper, we consider the following stochastic control problem: to minimize the average expected total cost $$J(x,u) = \mathop {\lim \inf }\limits_{T \to \infty } (1/T)E_x^u \int_0^T {\left[ {\phi (\xi _t ) + |u_t (\xi )|} \right]} dt,$$ 〈subject to $$d\xi _t = u_1 (\xi )dt + dw_t , \xi _0 = x, |u| \leqslant 1,$$ (w t) a Wiener process, with all measurable functions on the past of the state process {ξ s ;st} and bounded by unity, admissible as controls. It is proved that, under very mild conditions on the running cost function φ(·), the optimal law is of the form $$\begin{gathered} u_t^* (\xi ) = - sign\xi _t , |\xi _t | > b, \hfill \\ u_t^* (\xi ) = 0, |\xi _t | > b. \hfill \\ \end{gathered} $$ The cutoff pointb and the performance rate of the optimal lawu* are simultaneously determined in terms of the function φ(·) through a simple system of integrotranscendental equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号