首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The miscibility, mechanical and morphological properties of mixed Langmuir and Langmuir-Blodgett monolayers prepared from the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and the perfluorinated fatty acid perfluorooctadecanoic acid have been studied as a function of film composition and subphase salinity. It was demonstrated here, for the first time, that the extent of surfactant miscibility in mixed phospholipid-perfluoroacid monolayers, and hence the resulting mechanical properties of the monolayer film, can be controlled by altering the concentration of sodium ions in the underlying subphase. Elevated Na(+) concentrations resulted in lower net attractive interactions between film components, likely through specific ion adsorption to the negatively-charged perfluoroacid, along with decreased film elasticities. These results differ significantly from conventional fatty-acid-carboxylate monolayer systems in which film cohesion is typically enhanced through adsorption of cations to surfactant headgroups. Atomic force microscope images of films deposited onto solid mica substrates revealed that the films deposited from pure water formed multimolecular aggregates of surfactant, which could be attributed to the highly cohesive nature of the films, but the use of salt in the subphase diminished aggregate formation and resulted in the production of homogeneous monolayer films.  相似文献   

2.
Antimicrobial agents have a major practical importance in food, pharmaceutical and cosmetic applications for preventing contamination. Our group has developed a novel class of cationic diacyl glycerol arginine-based surfactants denoted 1414RAc and 1212RAc. To assess the antimicrobial properties of these new surfactants we have studied how they interact with 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) and 1,2-dimiristoyl-sn-glycero-3-phosphocoline (DMPC) as model membranes, as well with living organisms endowed or not with external barriers, such as gram negative bacteria, the human protozoa Leishmania and mammalian cell line.

The structure and phase characteristics of mixed monolayers have been assessed through the analysis of static elasticity. The extent of component miscibility of surfactant and phospholipid in mixed monolayers has been studied using the additivity rule and the excess free energy of a mixture as a function of the phospholipid molar fraction for different surface pressure values. In all the mixtures studied, the mixed monolayer is thermodynamically favoured except for the 1212RAc/DMPC case that exhibits positive values of excess free energy.

The interaction with living cells has cytotoxic effects only in eukaryotic cells, by unspecific membrane permeabilization.  相似文献   


3.
The thermodynamic treatment of a surfactant mixture was applied to the mixture of sodium chloride, NaCl, with octyl methyl sulfoxide (OMS) and that with decyldimethylphosphine oxide (DePO). The surface tension of aqueous solutions of the mixtures was measured as a function of the total concentration and the composition of the mixtures at 298.15 K. The total surface densities of the mixtures and the composition of the adsorbed films and micelles were evaluated by applying thermodynamic equations to the expeimental results. It was found that the adsorbed film and micelle are almost composed of the surfactant and there is slight attractive interaction between the ions of NaCl and the head groups of OMS and DePO molecules in the adsorbed films and micelles. A difference in the miscibility of NaCl and surfactant was observed between the OMS and DePO systems and attributed to the difference in the hydration of the head group between OMS and DePO molecules. The comparison of these results with those of the mixtures of NaCl with tetraethylene glycol monooctyl ether (C(8)E(4)) and dodecylammonium chloride (DAC) indicated that the small difference in the miscibility in an adsorbed film and micelle among these nonionic surfactant systems arises from the difference in hydration and structure of the head groups and the large one between the nonionic surfactant and DAC systems results from electrostatic interactions between dodecylammonium and sodium ions. Copyright 2001 Academic Press.  相似文献   

4.
In conformity with the conclusion obtained previously, the mixed micelle formation of surfactants was treated thermodynamically as the appearance of a macroscopic bulk phase with the aid of the excess thermodynamic quantities similar to those used for the adsorbed film. The composition of surfactant in the mixed micelle and the thermodynamic quantities of micelle formation were found to be evaluated by applying the thermodynamic equations derived. These equations were extended so as to be applicable to any kind of surfactant mixture. It was shown that the critical micelle concentration vs. composition of surfactant curves form a diagram analogous to the phase diagram of binary mixture. Applying the equation to the published data on typical surfactant systems, this thermodynamic approach was proved to be useful to clarify the miscibility of surfactants in the micellar state.  相似文献   

5.
Planar-supported lipid bilayers have attracted enormous attention because of their properties as model cell membranes, which can be employed in a variety of fundamental biological studies and medical devices. Furthermore, the development of patterned biological interfaces is of great practical and scientific interest because of their potential applications in the field of biosensors, drug screening, tissue engineering, and medical implants. In this study, mica-supported membranes were constructed from biomimetic peptide-amphiphiles and their mixtures with lipidated poly(ethylene glycol) (PEG120) molecules or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) phospholipids using the Langmuir-Blodgett technique. The two peptide-amphiphiles used in this study were a fibronectin-mimetic with the PHSRN(SG)(3)SGRGDSP headgroup (referred to as PHSRN-GRGDSP) that contains both the primary (GRGDSP) and the synergy (PHSRN) recognition sites for alpha(5)beta(1) integrins and a peptide-amphiphile that mimics a fragment of the N-terminus of the fractalkine receptor (referred to as NTFR). Compression isotherms of the peptide-amphiphiles and their mixtures with PEG120 at the air/water interface were recorded and analyzed to evaluate the extent of miscibility in the two-component LB films. Domain formation in mica-supported bilayers constructed from mixtures of peptide-amphiphiles and lipidated PEG120 or DPPC was observed using atomic force microscopy. In PHSRN-GRGDSP/PEG120 mixtures deposited from an aqueous subphase at pH 7, concentration-dependent phase separation was observed on the AFM images. The NTFR/PEG120 and NTFR/DPPC mixtures deposited at pH 10 exhibited extensive lateral phase separation at all mixture compositions, whereas at deposition pH 7 the concentrations of NTFR/DPPC examined here were well mixed.  相似文献   

6.
This work is devoted to the dynamic properties of adsorption films of pulmonary surfactant and a spread monolayer of dipalmitoylphosphatidylcholine, which is the main component of the mixed surfactant. The surface dilatational elasticity of the aforementioned systems has been determined using a recently proposed approach, which is based on the analysis of a response of a system to large deformations of a surface, and a modified Langmuir trough, which excludes solution leakage under barriers. At low surface tensions (below 30 mN/m) corresponding to those in pulmonary alveoles, the surface elasticity of a pulmonary surfactant adsorption film is half that of the spread dipalmitoylphosphatidylcholine monolayer. This may, in the former case, be related to the displacement of components with lower surface activity from the surface upon film compression.  相似文献   

7.
Pulmonary surfactant is a mixed lipid protein substance of defined composition that self-assembles at the air-lung interface into a molecular film and thus reduces the interfacial tension to close to zero. A very low surface tension is required for maintaining the alveolar structure. The pulmonary surfactant film is also the first barrier for airborne particles entering the lung upon breathing. We explored by frequency modulation Kelvin probe force microscopy (FM-KPFM) the structure and local electrical surface potential of bovine lipid extract surfactant (BLES) films. BLES is a clinically used surfactant replacement and here served as a realistic model surfactant system. The films were distinguished by a pattern of molecular monolayer areas, separated by patches of lipid bilayer stacks. The stacks were at positive electrical potential with respect to the surrounding monolayer areas. We propose a particular molecular arrangement of the lipids and proteins in the film to explain the topographic and surface potential maps. We also discuss how this locally variable surface potential may influence the retention of charged or polar airborne particles in the lung.  相似文献   

8.
In pulmonary tuberculosis, Mycobacterium tuberculosis lies in close physical proximity to alveolar surfactant. Cell walls of the mycobacteria contain loosely bound, detachable surface-active lipids. In this study, the effect of mycolic acid (MA), the most abundant mycobacterial cell wall lipid, on the surface activity of phospholipid mixtures from lung surfactant was investigated using Langmuir monolayers and atomic force microscopy (AFM). In the presence of mycolic acid, all the surfactant lipid mixtures attained high minimum surface tensions (between 20 and 40 mN/m) and decreased surface compressibility moduli <50 mN/m. AFM images showed that the smooth surface topography of surfactant lipid monolayers was altered with addition of MA. Aggregates with diverse heights of at least two layer thicknesses were found in the presence of mycolic acid. Mycolic acids could aggregate within surfactant lipid monolayers and result in disturbed monolayer surface activity. The extent of the effect of mycolic acid depended on the initial state of the monolayer, with fluid films of DPPC-POPC and DPPC-CHOL being least affected. The results imply inhibitory effects of mycolic acid toward lung surfactant lipids and could be a mechanism of lung surfactant dysfunction in pulmonary tuberculosis.  相似文献   

9.
Natural lung surfactant contains less than 40% disaturated phospholipids, mainly dipalmitoylphosphatidylcholine (DPPC). The mechanism by which lung surfactant achieves very low near-zero surface tensions, well below its equilibrium value, is not fully understood. To date, the low surface tension of lung surfactant is usually explained by a squeeze-out model which predicts that upon film compression non-DPPC components are gradually excluded from the air-water interface into a surface-associated surfactant reservoir. However, detailed experimental evidence of the squeeze-out within the physiologically relevant high surface pressure range is still lacking. In the present work, we studied four animal-derived clinical surfactant preparations, including Survanta, Curosurf, Infasurf, and BLES. By comparing compression isotherms and lateral structures of these surfactant films obtained by atomic force microscopy within the physiologically relevant high surface pressure range, we have derived an updated squeeze-out model. Our model suggests that the squeeze-out originates from fluid phases of a phase-separated monolayer. The squeeze-out process follows a nucleation-growth model and only occurs within a narrow surface pressure range around the equilibrium spreading pressure of lung surfactant. After the squeeze-out, three-dimensional nuclei stop growing, thereby resulting in a DPPC-enriched interfacial monolayer to reduce the air-water surface tension to very low values.  相似文献   

10.
This paper deals with the change of the phase diagram of ternary systems of the type H2O-oil-nonionic surfactant with temperature, in particular, with the question regarding the reasons for the separation of such mixtures into three phases. It is shown that the phase behavior is mainly determined by the interplay between the lower miscibility gap between oil and surfactant with the upper miscibility gap between H2O and surfactant. From systematic investigations with dodecane, octane, cyclohexane and toluene as oils with ?simple“ alkylpolyethyleneglycolethers CiEj as surfactants, ten qualitative rules are derived concerning the dependence of the position and the width of the three-phase temperature interval on the hydrophobicity of the oil and the amphiphilicity of the surfactant. The rules permit the choice of the appropriate surfactant for application in chemical engineering. Finally, the phase behavior with mixtures of oils and mixtures of surfactants, resp., is studied.  相似文献   

11.
Measurements were made of the surface tension of the aqueous solutions of p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethylene glycols) having 10 oxyethylene groups in the molecule (Triton X-100, TX100) and cetyltrimethylammonium bromide (CTAB) with Zonyl FSN-100 (FC6EO14, FC1) as well as with Zonyl FSO-100 (FC5EO10, FC2) ternary mixtures. The obtained results were compared to those provided by the Fainerman and Miller equation and to the values of the solution surface tension calculated, based on the contribution of a particular surfactant in the mixture to the reduction of water surface tension. The changes of the aqueous solution ternary surfactants mixture surface tension at the constant concentration of TX100 and CTAB mixture at which the water surface tension was reduced to 60 and 50 mN/m as a function of fluorocarbon surfactant concentration, were considered with regard to the composition of the mixed monolayer at the water-air interface. Next, this composition was applied for the calculation of the concentration of the particular surfactants in the monolayer using the Frumkin equation. On the other hand, the Gibbs surface excess concentration was determined only for the fluorocarbon surfactants. The tendency of the particular surfactants to adsorb at the water-air interface was discussed, based on the Gibbs standard free energy of adsorption which was determined using different methods. This energy was also deduced, based on the surfactant tail surface tension and tail-water interface tension.  相似文献   

12.
Monolayer films of phospholipids at the air-water interface have been transferred to solid substrates under conditions of continuously varying surface pressure, an approach termed COVASP. The molecular and supramolecular properties of the film constituents have been characterized with two complementary techniques. IR spectroscopy was used to monitor chain conformation as a function of transfer surface pressure. Results were compared to those from Langmuir films determined directly at the A/W interface by IR reflection-absorption spectroscopy (IRRAS). The methylene stretching frequencies for both proteated and acyl chain perdeuterated 1,2-dipalmitoylphosphatidylcholine (DPPC and DPPC-d62) in the transferred molecules indicate that the phospholipids retain at least, in part, their surface pressure-dependent chain-conformational order characteristics. The line widths of these modes are somewhat reduced, suggestive of slower rates of reorientational motion in the Langmuir-Blodgett (LB) films. Epifluorescence microscopy reveals a progressive condensation gradient, including nucleation and growth of probe-excluding condensed domains along the transfer line. DPPC condensation, observed along a single LB film, was qualitatively comparable to compression-driven condensation as observed in situ or in conventional LB films transferred at constant pressures. However, condensation along the compression isotherm in COVASP-LB films was reduced by 15-20% as compared to films equilibrated at different constant pressures, probably the result of kinetic differences in equilibration processes. As a preliminary demonstration of the utility of this new approach, the monolayer --> multilayer transition known to occur (Eur. Biophys. J. 2005, 34, 243) in a four-component model for pulmonary surfactant has been examined. IR parameters from both the lipid and the protein constituents of the film all indicate that the transition persists during the transfer process. This new approach for the study of transferred films will permit the efficient characterization of lipid-protein interactions and structural transitions occurring in pulmonary surfactant films subjected to dynamic compression.  相似文献   

13.
Although the influence of structurally modified sterols on artificial membranes has been intensively investigated, studies on the properties of stanols, which are saturated analogs of sterols, are very rare. Therefore, we have performed Grazing Incidence X-ray Diffraction (GIXD) experiments aimed at studying in-plane organization of a plant stanol-β-sitostanol monolayer and its mixtures with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine - DPPC at the air/water interface. The collected GIXD data, resulting in-plane parameters and BAM images provide information on molecular organization and in-plane ordering of the investigated films. It was found that the lateral organization of β-sitostanol/DPPC monolayers depends on their composition. The oblique structure of the in-plane lattice of tilted hydrophobic region of molecules, found for DPPC film, is maintained at 10 mol% of stanol in the system. However, at 30 and 90 mol% of stanol in the mixture, the arrangement of molecules is hexagonal and they are oriented perpendicularly to the interface. With the addition of stanol the extend of the in-plane order of the monolayers decreases. Moreover, in mixtures the ordered domains consist of both monolayer's components. Additionally, β-sitostanol film is of similar in-plane organization as the corresponding sterol monolayer (β-sitosterol) and stanol induces condensing effect on DPPC.  相似文献   

14.
An extension of the Markov chain model (MC) for micellization is proposed, which allows the distribution of the surfactants between the monomer solution and the micelles in a mixed surfactant system to be predicted. The dependence of the critical micelle concentration (cmc) on the composition of the solution is investigated. The equilibrium thermodynamic relation between cmc and micelle composition is discussed. The case of ternary mixtures is analyzed, and theoretical triangular diagram is constructed according to MC. Available experimental data for binary and ternary mixtures agree well with the new MC theory. The dependence of MC parameters on the structure of the surfactants is discussed. Comparison of MC with the simple mixture (“regular solution”) model is presented. The parameters of the MC theory are related to the interaction parameter β SM of the simple mixture model.  相似文献   

15.
Vibrational sum frequency generation spectroscopy is used to study the interactions of the charged soluble organic surfactant sodium dodecyl sulfate (SDS) with an insoluble 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer at the air-aqueous interface. Results indicate that the surfactant species compete for surface sites in the mixed system, with a lower monolayer number density of DPPC molecules being observed in the presence of dodecyl sulfate anions at the interface. Spectroscopic results also indicate that fewer dodecyl sulfate chains reside at the interface when the insoluble DPPC film is present. Increased conformational ordering of the acyl chains of both the DPPC molecules and the interfacial dodecyl sulfate anions is observed in the mixed system. Additionally, charged surfactant SDS promotes the alignment of the interfacial water molecules even in the presence of a DPPC monolayer.  相似文献   

16.
The thermodynamic behavior of mixed DOTAP-DPPC monolayers at the air-water interface has been investigated in the temperature range from 15 to 45 degrees C, covering the temperature interval where the thermotropic phase transition of DPPC, from solid-like to liquid-like, takes place. Based on the regular solution theory, the miscibility of the two lipids in the mixed monolayer was evaluated in terms of the excess Gibbs free energy of mixing DeltaG(ex), activity coefficients f(1) and f(2) and interaction parameter omega between the two lipids. The mixed DOTAP-DPPC film was found to have positive deviations from ideality at low DOTAP mole fractions, indicating a phase-separated binary mixture. This effect depends on the temperature and is largely conditioned by the structural chain conformation of the DPPC lipid monolayer. The thermodynamic parameters associated to the stability and the miscibility of these two lipids in a monolayer structure have been discussed in the light of the phase diagram of the DOTAP-DPPC aqueous mixtures obtained from differential scanning calorimetry measurements. The correlation between the temperature behavior of DOTAP-DPPC monolayers and their bulk aqueous mixtures has been briefly discussed.  相似文献   

17.
The surface tension of aqueous solutions of a sodium chloride (NaCl)-decyl methyl sulfoxide (DeMS) mixture was measured as a function of the total molality of the mixture and the mole fraction of DeMS in the mixture at 298.15 K under atmospheric pressure. The total surface density of the mixture and the mole fraction of DeMS in the adsorbed film and micelle were numerically evaluated by applying the thermodynamic treatment of surfactant mixture to the NaCl-DeMS mixture. Miscibility of NaCl and DeMS in the adsorbed film and micelle was clarified by use of the phase diagram of adsorption and micelle formation. Positive adsorption of NaCl was observed in the presence of DeMS and attributed to attractive interaction between the polar head group of DeMS molecule and Na+ or Cl- ions in the adsorbed film and micelle. The results were compared with those of NaCl-octyl methyl sulfoxide and NaCl-decyldimethylphosphine oxide mixtures to elucidate the structure effect of nonionic surfactant on the miscibility.  相似文献   

18.
At the air-water interface, interfacial molecular structure, intermolecular interactions, film relaxation and film respreading of model lung surfactant monolayers were studied using vibrational sum frequency generation (VSFG) spectroscopy combined with a Langmuir film balance. Chain-perdeuterated dipalmitoylphosphatidylcholine (DPPC-d62), palmitoyloleoyl-phosphatidylglycerol (POPG), palmitic acid (PA) and tripalmitin were investigated. In the DPPC-d62-PA binary monolayer, PA showed a condensing effect on the DPPC chains. On the contrary, in the DPPC-d62-POPG binary monolayer, POPG showed a fluidizing effect on the DPPC chains. In the ternary monolayer system of DPPC-d62-POPG-PA, the balance between the fluidizing and the condensing effect was also observed. In addition, the film relaxation behavior of DPPC-d62 and the enhanced film stability of DPPC-d62 caused by the addition of tripalmitin were observed. Real-time VSFG was also employed to study the respreading properties of a complex lung surfactant mixture containing DPPC-d62, POPG, PA and KL4 (a mimic of SP-B) peptide, which revealed DPPC enrichment after film compression.  相似文献   

19.
The objective of this work is to establish under which conditions short RNA molecules (similar to miRNA) associate with zwitterionic phospholipids and how this differs from the association with cationic surfactants. We study how the base pairing (i.e., single stranded versus double stranded nucleic acids) and the length of the nucleic acid and the charge of the lipid/surfactant monolayer affect the association behavior. For this purpose, we study the adsorption of nucleic acids to monolayers composed of dipalmitoyl phosphatidylcholine (DPPC) or dioctadecyl-dimethyl-ammoniumbromide (DODAB) using the surface film balance, neutron reflectometry, and fluorescence microscopy. The monolayer studies with the surface film balance suggested that short single-stranded ssRNA associates with liquid expanded zwitterionic phospholipid monolayers, whereas less or no association is detected for double-stranded dsRNA and dsDNA. In order to quantify the interaction and to determine the location of the nucleic acid in the lipid/surfactant monolayer we performed neutron reflectometry measurements. It was shown that ssRNA adsorbs to and penetrates the liquid expanded monolayers, whereas there is no penetration of nucleic acids into the liquid condensed monolayer. No adsorption was detected for dsDNA to zwitterionic monolayers. On the basis of these results, we propose that the association is driven by the hydrophobic interactions between the exposed hydrophobic bases of the ssRNA and the hydrocarbon chains of the phospholipids. The addition of ssRNA also influences domain formation in the DPPC monolayer, leading to fractal-like interconnected domains. The experimental results are discussed in terms of the implication for biological processes and new leads for applications in medicine and biotechnology.  相似文献   

20.
Contact angle (θ) measurements on poly(tetrafluoroethylene) (PTFE) and polymethyl methacrylate (PMMA) surface were carried out for the systems containing ternary mixtures of surfactants composed of: p-(1,1,3,3-tetramethylbutyl)phenoxypoly(ethylene glycols), Triton X-100 (TX100), Triton X-165 (TX165) and Triton X-114 (TX114), and fluorocarbon surfactants, Zonyl FSN100 (FSN100) and Zonyl FSO100 (FSO100). The aqueous solutions of ternary surfactant mixtures were prepared by adding TX114, FSN100 or FSO100 to binary mixtures of TX100+TX165, where the synergistic effect in the reduction of the surface tension of water (γ(LV)) was determined. From the obtained contact angle values, the relationships between cosθ, the adhesion tension and surface tension of solutions, cosθ and the reciprocal of the surface tension were determined. On the basis of these relationships, the correlation between the critical surface tension of PTFE and PMMA wetting and the surface tension of these polymers as well as the work of adhesion of aqueous solutions of ternary surfactant mixtures to PTFE and PMMA surface were discussed. The critical surface tension of PTFE and PMMA wetting, γ(C), determined from the contact angle measurements of aqueous solutions of surfactants including FSN100 or FSO100 was also discussed in the light of the surface tension changes of PTFE and PMMA under the influence of film formation by fluorocarbon surfactants on the surface of these polymers. The γ(C) values of the studied polymeric solids were found to be different for the mixtures composed of hydrocarbon surfactants in comparison with those of hydrocarbon and fluorocarbon surfactants. In the solutions containing fluorocarbon surfactants, the γ(C) values were different taking into account the contact angle in the range of FSN100 and FSO100 concentration corresponding to their unsaturated monolayer at water-air interface or to that saturated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号