首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influence of ionic liquids (ILs) addition (1?C50 wt%) on extraction efficiency of actinides by diphenyl(dibutyl)carbamoylmethylphosphine oxide (Ph2Bu2) from 3 M HNO3 has been studied. Am(III) distribution ratios in two-phase systems 0.1 M Ph2Bu2 in either DCE or CHCl3?C3 M HNO3 depending on the nature of additional ionic liquids: imidazolium-based ILs: [C4mim][PF6], [C4mim][BF4] and phosphonium-based ILs: PPF6, PBF4 and PCl were determined. The highest value of Am(III) extraction ratio change (1040) was found on addition of PPF6 to Ph2Bu2 in CHCl3. Extraction of Pu(IV) and U(VI) by 0.001 M Ph2Bu2 in the presence of [C4mim][PF6] in DCE, CHCl3 or meta-nitrobenzotrifluoride (NBTF) have been investigated. The greatest enhancement of extraction efficiency was observed using CHCl3, the least polar studied solvent. Using a mixture of conventional solvent and ionic liquid as a solvent for extractant enables one to increase distribution ratios and reduce viscosity of organic phase as compared with ionic liquid viscosity. The marked increase of Am(III), Pu(IV) and U(VI) extraction extent by Ph2Bu2 on addition of ionic liquids to the extent of 10 wt% permit one essentially to diminish amounts considerably more expensive carbamoylmethylphosphine oxide(the general name is CMPO) used in TRUEX process.  相似文献   

2.
The extraction behavior of U(VI) and Th(IV) with tri-isoamyl phosphate–kerosene (TiAP–KO) from nitric acid medium was investigated in detail using the batch extraction method as a function of aqueous-phase acidity, TiAP concentration and temperature, then the thermodynamic parameters associated with the extraction were derived by the second-law method. It could be noted that the distribution ratios of U(VI) or Th(IV) increased with increasing HNO3 concentration until 6 or 5 M from 0.1 M. However, a good separation factor (D U(VI)/D Th(IV)) of 88.25 was achieved at 6 M HNO3, and the stripping of U(VI) from TiAP–KO with deionized water or diluted nitric acid was easier than that of Th(IV). The probable extracted species were deduced by log D-log c plot at different temperatures as UO2(NO3)2·(TiAP)(1–2) and Th(NO3)4·(TiAP)(2–3), respectively. Additionally, △H, △G and △S for the extraction of U(VI) and Th(IV) revealed that the extraction of U(VI) by TiAP was an exothermic process and was counteracted by entropy change, while the extraction of Th(IV) was an endothermic process and was driven by entropy change.  相似文献   

3.
Summary The parameters affecting the formation of the microemulsion were investigated and the microemulsion region was determined. The extraction of uranium(VI) from HNO3 solution into a water in oil microemulsion was studied. The effects of the concentration of extractant (TRPO), the volume ratio of oil to water and the acidity of outer water phase on the extraction equilibrium of uranium(VI) are discussed and the appropriate conditions are obtained. The result showed the microemulsion has great efficiency for uranium(VI) extraction.  相似文献   

4.
Cationic ring-opening polymerization of 3,3-bis(chloromethyl)oxacyclobutane catalyzed by BF_3·OEt_2 was carried out in ionic liquids [bmim]BF_4 and [bmim]PF_6.The influences of BCMO concentration and molar ratio of BCMO/BF_3·OEt_2 on the molecular weights and yield of PBCMO were investigated.The polymerization in ionic liquids proceed to high conversions,although molecular weights are limited,similar to polymerization in organic solvent such as CH_2Cl_2.Follow a viewpoint of green chemistry, we feel ionic liquid [bmim]BF_4 is superior to [bmim]PF_6.Extracting [bmim]PF_6 from the product using organic solvent as extractant limits its advantage as a green reaction media.  相似文献   

5.
A simple method has been proposed for the determination of chromium species by high-performance liquid chromatography (HPLC) after preconcentration by the ionic liquid, 1-butyl-3-methyimidazolium hexafluorophosphate ([C4MIM][PF6]). The simultaneous preconcentration of Cr(VI) and Cr(III) in wastewater was achieved with ammonium pyrrolidinedithiocarbamate (APDC) as the chelating agent and the ionic liquid [C4MIM][PF6] as the extractant. Baseline separation of the APDC chelates of Cr(III) and Cr(VI) was realised on a RP-C18 column using a mixture of methanol–acetonitrile–water (53:14:33, v/v) as the mobile phase at a flow rate of 1.0 mL min− 1. The influences of several variables on the complexation and extraction were evaluated: pH, reaction time, APDC concentration and metal ion interference. Our results showed that when the linear concentration of Cr(VI) and Cr(III) ranged from 25 to 200 μg L− 1, their linear correlation coefficients were between 0.9977 and 0.9978, their recoveries ranged from 91.8% to 95.8% and their relative standard deviations (n = 3) were between 0.31% and 1.8%. Common metal ions in water did not interfere with the determination. This method is a simple, fast, accurate, highly stable and selective method and has successfully been applied to the speciation of chromium in wastewater.  相似文献   

6.
Room temperature ionic liquids (RTILs) have been used as novel solvents to replace traditional volatile organic solvents in organic synthesis, solvent extraction, and electrochemistry. The hydrophobic character and water immiscibility of certain ionic liquids allow their use in solvent extraction of hydrophobic compounds. In this work, a typical room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6], was used as an alternative solvent to study liquid/liquid extraction of heavy metal ions. Dithizone was employed as a metal chelator to form neutral metal-dithizone complexes with heavy metal ions to extract metal ions from aqueous solution into [C4mim][PF6]. This extraction is possible due to the high distribution ratios of the metal complexes between [C4mim][PF6] and aqueous phase. Since the distribution ratios of metal dithiozonates between [C4mim][PF6] and aqueous phase are strongly pH dependent, the extraction efficiencies of metal complexes can be manipulated by tailoring the pH value of the extraction system. Hence, the extraction, separation, and preconcentraction of heavy metal ions with the biphasic system of [C4mim][PF6] and aqueous phase can be achieved by controlling the pH value of the extraction system. Preliminary results indicate that the use of [C4mim][PF6] as an alternate solvent to replace traditional organic solvents in liquid/liquid extraction of heavy metal ions is very promising.  相似文献   

7.
The solvent extraction of U(VI) by p-tert-butylcalix[n]-arene acetate (H n L) (n=4, 6, 8) has been studied. The effects of acidity in aqueous phase and concentration of extractant in organic phase on the distribution ratio were examined. It has been found that the distribution ratio is proportional to [H+]−2 and [H n L](O) and the extracted complex species is UO2H n −2L. The equilibrium constants of the extraction reactions have been determined. The reaction mechanism is discussed.  相似文献   

8.
To detect, identify, and quantify the polycyclic aromatic hydrocarbons (PAHs) released into the environment, the PAHs need to be isolated from the soil matrix. In this work, a modified quick, easy, cheap, efficient, rugged and safe (QuEChERS) method with ionic liquid was combined with liquid chromatography to identify 16 selected PAHs in soil. Ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim]PF6) was applied as an extractant component to enhance the process. The [Hmim]PF6 content in acetonitrile (ACN) was optimized. The [Hmim]PF6 modified QuEChERS method has the advantages defined by its name and a similar recovery to other extraction methods reported in the literature. Adding [Hmim]PF6 may eliminate the co-extract proportion and achieve a more effective extraction. Compared with ACN alone, the matrix effect (ME) of ACN containing 5% [Hmim]PF6 was reduced by approximately 35%. Additionally, the ME of using ACN containing [Hmim]PF6 without a clean-up procedure was similar to that of using ACN followed by a clean-up procedure. The recoveries of the QuEChERS method implemented with [Hmim]PF6 ranged from 75.19% to 100.98%. The limits of detection (LOD) and limits of quantification (LOQ) ranged from 0.86 to 4.51 µg/kg and from 2.87 to 15.13 µg/kg, respectively.  相似文献   

9.
The hydrodechlorination performance of nickel complex catalysts, Ni[phen]2(PF6)2 and Ni[bpy]3(PF6)2, were investigated with [Bmim]Br as the ionic liquid solvent. It is proved that Ni[phen]2(PF6)2 is efficient for the hydrodechlorination of aryl chlorides under mild conditions with water as the hydrogen source. The hydrogen source of reaction is from the water which was confirmed by the deuterium incorporation experiments. Recycling experiments showed a decreasing activity of this catalyst due to a small leaching of nickel complex from the ionic liquid phase during the recycling process where n‐heptane was used as the extractant. A plausible reaction route has been suggested.  相似文献   

10.
Uranium extraction using DEHCNPB (butyl-1-[N,N-bis(2-ethylhexyl)carbamoyl]nonyl phosphonic acid, a bifunctional cationic extractant) has been studied to better understand mechanism differences depending on the original acidic solution (phosphoric or sulfuric). Solvent extraction batch experiments were carried out and the organic phases were probed using 31P-NMR. This technique enabled to demonstrate that phosphoric acid is poorly extracted by DEHCNPB ([H3PO4]org < 2mM), using direct quantification in the organic phase by 31P-NMR spectra integration. Moreover, in the presence of uranium in the initial phosphoric acid solution, uranyl extraction by DEHCNPB competes with H3PO4 extraction.Average stoichiometries of U(VI)-DEHCNPB complexes in organic phases were also determined using slope analysis on uranium distribution data. Uranium seems to be extracted from a phosphoric medium by two extractant molecules, whereas more than three DEHCNPB on average would be necessary to extract uranium from a sulfuric medium. Thus, uranium is extracted according to different mechanisms depending on the nature of the initial solution.  相似文献   

11.
Application of a room-temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim+][PF6 ?]), in the extraction of Eu(III) and Th(IV) ions from nitrate media using tri-n-octylphosphine oxide (TOPO) as extractant is investigated. The results are compared with those obtained in dichloromethane. It is shown that the europium ions are extracted via a solvation mechanism by formation of [Eu(TOPO) 3 3+ ](NO3 ?)3 species in both [C4mim+][PF6 ?] and dichloromethane. Nevertheless, application of the studied RTIL makes a significant improvement in the extraction efficiency of europium ions. A different attitude was observed for the extraction of thorium ions. In fact, although the analysis of the extraction data of these ions from sodium nitrate solutions confirms the formation of [Th(TOPO) 3 4+ ](NO3 ?)4 species in dichloromethane, the extraction of these ions into the ionic liquid was not affected by the presence of TOPO. This latter outcome states the process takes place by a cation-exchange mechanism. It is found that the extraction of thorium ions diminishes in the presence of nitric acid. Interestingly, in contrast to the results observed in the extraction of thorium ions from sodium nitrate solutions, TOPO shows a co-operative effect on the extraction of these ions from nitric acid media. This allows considering the mechanism of the extraction of Th4+ ions from nitric acid media as a mixed ion exchange-solvation mechanisms by formation of [Th(TOPO)4+](NO3 ?)(PF6 ?)3 species.  相似文献   

12.
In this study, we employed the room-temperature ionic liquid [bmim][PF6] as both ion-pair agent and an extractant in the phase-transfer liquid-phase microextraction (PTLPME) of aqueous dyes. In the PTLPME method, a dye solution was added to the extraction solution, comprising a small amount of [bmim][PF6] in a relatively large amount of CH2Cl2, which serves as the disperser solvent to an extraction solution. Following extraction, CH2Cl2 was evaporated from the extractant, resulting in the extracted dyes being concentrated in a small volume of the ionic liquid phase to increase the enrichment factor. The enrichment factors of for the dye Methylene Blue, Neutral Red, and Methyl Red were approximately 500, 550 and 400, respectively; their detection limits were 0.014, 0.43, and 0.02 μg L−1, respectively, with relative standard deviations of 4.72%, 4.20%, and 6.10%, respectively.  相似文献   

13.
Experimental densities, speeds of sound, and refractive indices of the binary mixtures of 2-butanone with cyclohexane and OMIM PF6 (1-methyl-3-octylimidazolium hexafluorophosphate) were determined from T = (293.15 to 303.15) K, since they are necessary to determine the (liquid + liquid) equilibrium. Excess molar volumes, changes of refractive index on mixing, and deviations in isentropic compressibility for the above systems were calculated. Experimental (liquid + liquid) equilibrium of the ternary mixtures {cyclohexane + 2-butanone + 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIM PF6)} and (cyclohexane + 2-butanone + OMIM PF6) were carried out to assess the suitability of HMIM PF6 and OMIM PF6 as azeotrope breaker of the mixture cyclohexane and 2-butanone. Selectivity and distribution ratio values, derived from the tie lines data, were presented in order to analyze the best separation solvent in a liquid extraction process. Experimental (liquid + liquid) equilibrium data were compared with the correlated values obtained by means of the NRTL and UNIQUAC models.  相似文献   

14.
The extraction of uranium(VI) from sulfuric acid medium with tri-octylphosphine oxide (TOPO) in n-heptane was studied. Accompanied with the increase in the concentration of H2SO4, the distribution coefficient of uranium(VI) increased in the region of dilute sulfuric acid. When the concentration of H2SO4 surpassed 3.5 mol·dm−3, the distribution coefficient of uranium(VI) was at maximum. This result was due to the competition extraction between uranium(VI) and H2SO4. From the data, the composition of extracted species and the equilibrium constant of extraction reaction have been evaluated, which were (TOPOH)2UO2(SO4)2 (TOPO) and 107.6±0.15, respectively.  相似文献   

15.
李晓萍  王强  李玲  丁艳萍 《色谱》2015,33(1):58-64
采用反气相色谱法(IGC)表征了离子液体(IL)1-己基-3-甲基咪唑四氟硼酸盐([HMIM]BF4)在343.15~373.15 K温度范围内的热力学参数.使用了一系列不同化学结构的探针分子测定[HMIM]BF4与溶剂之间的相互作用力.根据探针分子的保留时间计算得到探针分子与[HMIM]BF4之间的Flory-Huggins相互作用参数、摩尔吸附焓、无限稀释摩尔混合焓、摩尔蒸发焓、无限稀释活度系数以及[HMIM]BF4的溶解度参数.结果表明,n-C6n-C7n-C8n-C9、乙醚、四氢呋喃、苯、环己烷为[HMIM]BF4的不良溶剂;甲苯、间二甲苯、甲醇、乙醇、二氯甲烷、四氯化碳、氯仿、丙酮、乙酸乙酯、乙酸甲酯为[HMIM]BF4的良溶剂.运用外推法得到了[HMIM]BF4在室温(298.15K)时的溶解度参数为23.70 (J·-3)0.5.实验结果证明反气相色谱法是一种简便准确的获得离子液体热力学参数的方法.获得的热力学参数体现了这种离子液体与探针分子之间的相互作用力.本研究为离子液体的进一步应用提供了参考.  相似文献   

16.
Experimental (liquid + liquid) equilibria involving ionic liquids {1,3-dimethylimidazolium methyl sulfate (MMIM MeSO4)}, {2-propanol + ethyl acetate + 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6)} and {2-propanol + ethyl acetate + 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIM PF6)} were carried out to separate the azeotropic mixture ethyl acetate and 2-propanol. Selectivity and distribution ratio values, derived from the tie-lines data, were presented in order to analyze the best separation solvent in a liquid extraction process. Experimental (liquid + liquid) equilibria data were compared with the correlated values obtained by means of the NRTL, Othmer-Tobias and Hand equations. These equations were verified to accurately correlate the experimental data.  相似文献   

17.
Summary A systematic study on the extraction of U(VI) from nitric acid medium by tri-n-butylphosphate (TBP) dissolved in a non-traditional diluent namely 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6) ionic liquid (IL) is reported. The results are compared with those obtained using TBP/n-dodecane (DD). The distribution ratio for the extraction of U(VI) from nitric acid by 1.1M TBP/bmimPF6 increases with increasing nitric acid concentration. The U(VI) distribution ratios are comparable in the nitric acid concentration range of 0.01M to 4M, to the ratios measured using 1.1M TBP/DD. In contrast to the extraction behavior of TBP/DD, the D values continued to increase with the increase in the concentration of nitric acid above 4.0M. The stoichiometry of uranyl solvate extracted by 1.1M TBP/IL is similar to that of TBP/DD system, wherein two molecules of TBP are associated with one molecule of uranyl nitrate in the organic phase. Ionic liquid alone also extracts uranium from nitric acid, albeit to a small extent. The exothermic enthalpy accompanying the extraction of U(VI) in TBP/bmimPF6 decreases with increasing nitric acid and with TBP concentrations.  相似文献   

18.
The extraction kinetics of uranium(VI) and thorium(IV) with Tri-iso-amyl phosphate (TiAP) from nitric acid medium has been investigated using a Lewis Cell. Especially, dependences of the extraction rate on stirring speed, temperature, interfacial area were firstly measured to elucidate the extraction kinetics regimes. The experimental results demonstrated that extraction kinetic of U(VI) is governed by chemical reactions at interface with an activation energy, Ea, of 43.41 kJ/mol, while the rate of Th(IV) extraction is proved to be intermediate controlled, of which the Ea is 23.20 kJ/mol. Reaction orders with respect to the influencing parameters of the extraction rate are determined, and the rate equations of U(VI) and Th(IV) at 293 K have been proposed as $$ {\text{r}} = - {\text{dcUO}}_{ 2} \left( {{\text{NO}}_{ 3} } \right)_{ 2} /{\text{dt}} = 1. 80 \times 10^{ - 3} \left[ {{\text{UO}}_{ 2} \left( {{\text{NO}}_{ 3} } \right)_{ 2} } \right]^{ 1.0 1} \left[ {\text{TiAP}} \right]^{0. 5 5} , $$ $$ {\text{r}} = - {\text{dcTh }}\left( {{\text{NO}}_{ 3} } \right)_{ 4} /{\text{dt}} = 1. 8 8\times 10^{ - 3} \left[ {{\text{Th }}\left( {{\text{NO}}_{ 3} } \right)_{ 4} } \right]^{ 1.0 4} \left[ {\text{TiAP}} \right]^{ 1. 7 7} \left[ {{\text{HNO}}_{ 3} } \right]^{0. 3 8} , $$ respectively.  相似文献   

19.
The synergic extraction of uranium(VI) from nitric acid solution with petroleum sulfoxides (PSO) and tri-n-butyl phosphate (TBP) mixture has been studied. It has been found that maximum synergic extraction effect occurs if the molar ratio of PSO to TBP is two to three. The composition of the complex of synergic extraction is UO2(NO3)2·TBP·PSO. The formation constant of the complex isK PT=8.19. The effect of extractant concentration, nitric acid concentration, salting-out agent concentration and temperature on the extraction equilibrium of uranium(VI) was also studied.  相似文献   

20.
The synergistic extraction of uranium(VI) from aqueous nitric acid solution with mixtures of bis(hexylsulfinyl)ethane (BHxSE) and petroleum sulfoxides (PSO) in 1,1,2,2-tetrachloroethane was studied. It has been found that the maximum synergistic extraction effect occurs when the molar ratio of PSO to BHxSE is close to 1. The composition of the complex of synergistic extraction was estimated as UO2(NO3)2 .BHxSE.PSO. The formation constant of the complex was equal to KBP = 4.23±0.03. The effects of extractant, nitric acid, salting-out agent, and complex anion concentrations and temperature on the extraction equilibrium of uranium(VI) were also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号