首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Two tapered statistical copolymers were prepared by the oxyanionic polymerization of ethylene oxide and propylene oxide and characterized by gel permeation chromatography and 13C NMR spectroscopy. We denote the copolymers t-E/P38 and t-E/P30, where E = oxyethylene, OCH2CH2, and P = oxypropylene, OCH2CH(CH3), and the number denotes the mole percentage P. In each case the copolymer chain length was ca. 100 oxyalkylene units. The association of the copolymers to form micelles in aqueous solution was checked by dynamic light scattering. The critical micelle temperatures (cmt) of the copolymers at several concentrations were determined by static light scattering and dye solubilization, and values of the apparent standard enthalpy of micellization (DeltamicHapp0) were obtained. For both copolymers, a low value of DeltamicHapp0 was found when the copolymer concentration exceeded ca. 150 g dm(-3).  相似文献   

3.
4.
5.
Two new poly(ethylene oxide)-poly(styrene oxide) triblock copolymers (PEO-PSO-PEO) with optimized block lengths selected on the basis of previous studies were synthesized with the aim of achieving a maximal solubilization ability and a suitable sustained release, while keeping very low material expense and excellent aqueous copolymer solubility. The self-assembling and gelling properties of these copolymers were characterized by means of light scattering, fluorescence spectroscopy, transmission electron microscopy, and rheometry. Both copolymers formed spherical micelles (12-14 nm) at very low concentrations. At larger concentration (>25 wt%), copolymer solutions showed a rich phase behavior, with the appearance of two types of rheologically active (more viscous) fluids and of physical gels depending on solution temperature and concentration. The copolymer behaved notably different despite their relatively similar block lengths. The ability of the polymeric micellar solutions to solubilize the antifungal drug griseofulvin was evaluated and compared to that reported for other structurally-related block copolymers. Drug solubilization values up to 55 mg g−1 were achieved, which are greater than those obtained by previously analyzed poly(ethylene oxide)-poly(styrene oxide), poly(ethylene oxide)-poly(butylene oxide), and poly(ethylene oxide)-poly(propylene oxide) block copolymers. The results indicate that the selected SO/EO ratio and copolymer block lengths were optimal for simultaneously achieving low critical micelle concentrations (cmc) values and large drug encapsulation ability. The amount of drug released from the polymeric micelles was larger at pH 7.4 than at acidic conditions, although still sustained over 1 day.  相似文献   

6.
A series of amphiphilic temperature‐responsive star‐shaped poly(D,L‐lactic‐co‐glycolic acid)‐b‐methoxy poly(ethylene glycol) (PLGA‐mPEG) block copolymers with different arm numbers were synthesized via the arm‐first method. Gel permeation chromatography data confirmed that star‐shaped PLGA‐mPEG copolymers had narrow polydispersity index, indicating the successful formation of star‐shaped block copolymers. Indirectly, the 1H NMR spectra in two kinds of solvents and dye solubilization method had confirmed the formation of core‐shell micelles. Further, core‐shell micelles with sizes of about 30–50 nm were directly observed by transmission electron microscopy. Subsequently, the micellar sizes and distributions as a function of concentrations and temperature were measured. At various copolymer concentrations, individual micelles with size of 20–40 nm and grouped micelles with size of 600–700 nm were found. Micellar mechanism of star‐shaped block copolymers in aqueous solution was simultaneously discussed. In addition, sol–gel transition of star‐shaped block copolymers in water was also investigated via the inverting test method. The critical gel temperature (CGT) and critical gel concentration (CGC) values of two‐arm, three‐arm and four‐arm copolymer solutions were markedly higher than ones of one‐arm copolymer. Moreover, the same CGC values of copolymer solution with different molecular weight and the same arm composition were ~15 wt %, and CGT values increased from ~38 to ~47°C with increasing arm numbers. Finally, the temperature‐dependent micellar packing gelation mechanism of star‐shaped block copolymer was schematically illustrated. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The micellar properties and solubilization capacity of poorly water soluble drugs of several micellar and gel solutions of diblock and triblock copolymers of styrene oxide/ethylene oxide have been measured and compared with block copolymers of butylene oxide/ethylene oxide, showing that the solubilization capacity of the styrene oxide block is approximately four times that of a butylenes oxide block for dilute solutions. To continue establishing the correlation between micellar characteristics and solubilization capacity, we have found it interesting to compare the micellar and gelation properties of the diblock and triblock copolymers PSO10PEO135 and PEO69PSO8PEO69 (subindexes are the number-average block lengths), with different architecture but similar average block lengths. Surface tension measurements allowed the determination of the critical micelle concentrations at several temperatures and, so, to calculate standard enthalpies of micellization. Static and dynamic light scattering data permitted us to determine micellar parameters and to obtain qualitatively the extent of hydration of the copolymer micelle. A tube inversion method was used to define the mobile-immobile (soft-hard gel) phase boundary. To refine the phase diagram and observe the existence of additional phases, rheological measurements were done. The results are in good agreement with previous values published for PSOnPEOm and PEOmPSOnPEOm copolymers.  相似文献   

8.
9.
10.
Block copolymers, when dissolved in a selective solvent, form spherical micelles. These micelles can selectively solubilize organic molecules otherwise insoluble in the pure solvent. In this study, we report solubilization of organic molecules by styrene-methacrylic acid block copolymer micelles in aqueous buffers. A light scattering technique was developed to determine the extent of micellar solubilization. Our results indicate that the extent of micellar solubilization depends on the chemical nature of organic molecules, specifically, on the interactions between the organic compound and polystyrene. A thermodynamic model has been developed to describe micellar solubilization. The theoretical calculation agrees reasonably well with the experimental results for two micellar samples examined. ©1995 John Wiley & Sons, Inc.  相似文献   

11.
The micellization in dilute aqueous solution of a 50/50 wt% mixture of two triblock copolymers, E45B14E45 and E62P39E62, and the gelation of concentrated micellar solutions have been investigated over a range of temperatures. Here E, B, and P denote oxyethylene, oxubutylene, and oxypropylene chain units. Comparison is made with aqueous solutions of the individual copolymers. The results of light scattering measurements are consistent with effectively separate micellization of the two copolymers in the mixture. Hard gel formed when the extent of micellization was high for both copolymers. Because of the relatively high critical micellization temperatures of copolymer E62P39E62, the low-temperature boundary of the hard gel was high for this copolymer and for the mixture. The minimum concentration for hard-gel formation was higher for the mixture than for either of the individual copolymers, as would be expected for packing of two distributions of micelles of different average size.  相似文献   

12.
The mixed micellar system comprising the poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)-based triblock copolymer (EO)(20)(PO)(70)(EO)(20) (P123) and the anionic surfactant sodium dodecyl sulfate (SDS) has been investigated in aqueous media by small-angle neutron scattering (SANS) and viscosity measurements. The aggregation number of the copolymer in the micelles decreases upon addition of SDS, but a simultaneous enhancement in the degree of micellar hydration leads to a significant increase in the micellar volume fraction at a fixed copolymer concentration. This enhancement in the micellar hydration leads to a marked increase in the stability of the micellar gel phase until it is destroyed at very high SDS concentration. Mixed micellar systems with low and intermediate SDS concentrations form the micellar gel phase in much wider temperature and copolymer concentration ranges than the pure copolymer micellar solution. A comparison of the observed results with those for the copolymers (EO)(26)(PO)(40)(EO)(26) (P85) and (EO)(99)(PO)(70)(EO)(99) (F127) suggests that the composition of the copolymers plays a significant role in determining the influence of SDS on the gelation characteristics of the aqueous copolymer solutions. Copolymers with high PO/EO ratios show an enhancement in the stability of the gel phase, whereas copolymers with low PO/EO ratios show a deterioration of the same in the presence of SDS.  相似文献   

13.
A range of poly(ε-caprolactone)/poly(N-vinyl-2-pyrrolidone) amphiphilic block copolymers with well-de ned hydrophilic chain length were synthesized by the living/controlled reversible addition fragmentation chain transfer polymerization method. The composition and struc-ture of the targeted resultants were characterized with 1H NMR, 13C NMR, FT-IR spec-troscopy and gel permeation chromatography. The various block copolymers were success-fully employed to fabricate the spherical micelle with core-shell morphological structure. The poly(N-vinyl-2-pyrrolidone) block-dependent characteristics of the copolymeric micelles were investigated by uorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. The solubilization of the hydrophobic ibuprofen as a model drug in the micelle solution was also explored. It was found that the drug loading contents are related to the micellar morphology structure determined by hydrophilic chain length in the copolymer.  相似文献   

14.
Water-soluble diblock copolymers of methyl tri(ethylene glycol) vinyl ether (hydrophilic block) and isobutyl vinyl ether (hydrophobic block) of different molecular weights and composition were synthesized by living cationic polymerization. The molecular weight and comonomer composition of these copolymers were determined by GPC and 1H NMR spectroscopy, respectively. Aqueous solutions of the copolymers were characterized in terms of their micellar behavior using dynamic light scattering, aqueous GPC, and dye solubilization. All the copolymers formed aggregates with the exception of a diblock copolymer with only two hydrophobic monomer units. The micellar hydrodynamic size scaled with the 0.61 power of the number of hydrophobic units, in good agreement with a theoretical exponent of 0.73. An increase in the length of the hydrophobic block at constant hydrophilic block length or an increase in the overall polymer size at constant block length ratio both resulted in lower critical micelle concentrations (cmcs). The cloud points of 1% w/w aqueous solutions of the polymers were determined by turbidimetry. An increase in the length of the hydrophobic block at constant hydrophilic block length caused a decrease in the cloud points of the copolymers. However, an increase in the overall polymer size at constant block length ratio led to an increase in the cloud point. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The aqueous solution properties of five diblock copolymers prepared by sequential anionic copolymerisation (i.e. E102P37, E104P52, E92P55, E104P60 and E98P73 where E denotes oxyethylene and P denotes oxypropylene) were studied across a wide range of concentration. The techniques used to study micellisation and micellar properties in dilute solution were static and dynamic light scattering, surface tension, and eluent gel-permeation chromatography. The gelation of concentrated solutions was also investigated. As expected, the critical micelle concentration (CMC) was lowered and the association number of the micelles was increased by an increase in P-block length. In contrast, the critical gel concentration was unchanged, consistent with the constant E-block length leading to micelles with essentially identical E-block fringes. Comparison of the CMCs of the diblock copolymers with those of triblock EmPnEm copolymers with the same P-block length shows the diblock copolymers to micellise more efficiently. A similar comparison of the CMCs of the diblock copolymers with those of EmBn copolymer (B denotes oxybutylene) shows the hydrophobicity of a P unit to be one-sixth that of a B unit. The possibility is explored of correlating the limiting association number of a spherical micelle with the hydrophobe block length of its constituent copolymer. Of the five copolymers, only dilute solutions of E98P73 were predominantly micellar at both room temperature and body temperature, and this copolymer must be a prime candidate in any consideration of the potential application of EmPn copolymers in the solubilisation and controlled release of drugs.  相似文献   

16.
Amphiphilic dendritic–linear–dendritic triblock copolymers based on hydrophilic linear poly(ethylene oxide) (PEO) and hydrophobic dendritic carbosilane were synthesized with a divergent approach at the allyl end groups of diallyl‐terminated PEO. Their micellar characteristics in an aqueous phase were investigated with dynamic light scattering, fluorescence techniques, and transmission electron microscopy. The block copolymer with the dendritic moiety of a third generation could not be dispersed in water. The block copolymers with the first (PEO–D ‐Si‐1G) and second (PEO–D ‐Si‐2G) generations of dendritic carbosilane blocks formed micelles in an aqueous phase. The critical micelle concentrations of PEO–D ‐Si‐1G and PEO–D ‐Si‐2G, determined by a fluorescence technique, were 27 and 16 mg/L, respectively. The mean diameters of the micelles of PEO–D ‐Si‐1G and PEO–D ‐Si‐2G, measured by dynamic light scattering, were 170 and 190 nm, respectively, which suggests that the micelles had a multicore‐type structure. The partition equilibrium constants of pyrene in the micellar solution increased with the increasing size of the dendritic block (e.g., 7.68 × 104 for PEO–D ‐Si‐1G and 9.57 × 104 for PEO–D ‐Si‐2G). The steady‐state fluorescence anisotropy values (r) of 1,6‐diphenyl‐1,3,5‐hexatriene were 0.06 for PEO–D ‐Si‐1G and 0.09 for PEO–D ‐Si‐2G. The r values were lower than those of the linear polymeric amphiphiles, suggesting that the microviscosity of the dendritic micellar core was lower than that of the linear polymeric analogues. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 918–926, 2001  相似文献   

17.
Poly(ethylene glycol)‐b‐polycaprolactone (MPEG‐PCL) diblock copolymers were synthesized via a ring‐opening polymerization of ε‐CL monomers with MPEG as an initiator. Their solubilities and apparent critical micelle concentrations (CMC) in aqueous solution were investigated as well as the determination of the micellar hydrodynamic diameter using dynamic light scattering (DLS). As PCL block length increased, the solubility and CMC decreased while diameters of micelles increased. The gel–sol transition behaviors were investigated using a vial tilting method. Aqueous solutions of copolymers undergo a gel to sol transition with increase in temperature when their polymer concentrations are above a critical gel concentration (CGC). The CGC of the copolymers and gel–sol transition temperature are influenced by the PCL chain length. The tapping mode AFM was performed by imaging the freeze‐dried deposits from the copolymer solutions on mica to investigate a process from free chains to micelles and to gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3406–3417, 2006  相似文献   

18.
Solutions of the polyoxystyrene-polyoxyethylene block copolymer SO(17)EO(65), where SO denotes polystyrene oxide block as the hydrophobic block and EO the polyethylene oxide block as the hydrophilic block, in mixtures of water (a selective solvent for the EO blocks) and 1,4-dioxane (a good solvent for both blocks) were studied by surface tension and light scattering measurements. Surface and micellar structural parameters have been analyzed as a function of solvent composition. The critical micelle concentration increases and the micellar aggregation number decreases, respectively, as the amount of 1,4-dioxane in the binary solvent increases as a consequence of the enhanced solubility of the SO blocks in the solvent mixture, causing the lowering of the interfacial tension between the hydrophobic blocks in the micellar core and the solvent; therefore, to achieve thermodynamic equilibrium, the micelle size decreases. In addition, static light scattering (SLS) has been proved to be a useful technique to detect the lower boundary of the transition between a dilute micellar solution (sol) to a local-ordered micellar solution (soft gel) resulting from a percolation mechanism. Comparison of the sol-soft gel boundaries obtained from SLS for copolymers SO(17)EO(65) and EO(67)SO(15)EO(67) with those previously derived by rheology is made. Finally, changes in the autocorrelation function of the solutions at the boundary obtained from dynamic light scattering are also analyzed.  相似文献   

19.
Several series of amphiphilic diblock copolymers are investigated as macrosurfactants in comparison to reference low-molar-mass and polymeric surfactants. The various copolymers share poly(butyl acrylate) as a common hydrophobic block but are distinguished by six different hydrophilic blocks (one anionic, one cationic, and four nonionic hydrophilic blocks) with various compositions. Dynamic light scattering experiments indicate the presence of micelles over the whole concentration range from 10(-4) to 10 g x L(-1). Accordingly, the critical micellization concentrations are very low. Still, the surface tension of aqueous solutions of block copolymers decreases slowly but continuously with increasing concentration, without exhibiting a plateau. The longer the hydrophobic block, the shorter the hydrophilic block, and the less hydrophilic the monomer of the hydrophilic block is, the lower the surface tension is. However, the effects are small, and the copolymers reduce the surface tension much less than standard low-molar-mass surfactants. Also, the copolymers foam much less and even act as anti-foaming agents in classical foaming systems composed of standard surfactants. The copolymers stabilize O/W emulsions made of methyl palmitate as equally well as standard surfactants but are less efficient for O/W emulsions made of tributyrine. However, the copolymer micelles exhibit a high solubilization power for hydrophobic dyes, probably at their core-corona interface, in dependence on the initial geometry of the micelles and the composition of the block copolymers. Whereas micelles of copolymers with strongly hydrophilic blocks are stable upon solubilization, solubilization-induced micellar growth is observed for copolymers with moderately hydrophilic blocks.  相似文献   

20.
Here we report the synthesis and solution characterization of a novel series of AB diblock copolymers with neutral, water‐soluble A blocks consisting of N,N‐dimethylacrylamide and pH‐responsive B blocks of N,N‐dimethylvinylbenzylamine. To our knowledge, this represents the first example of an acrylamido–styrenic block copolymer prepared directly in a homogeneous aqueous solution. The best blocking order [with poly(N,N‐dimethylacrylamide) as a macro‐chain‐transfer agent] yielded well‐defined block copolymers with minimal homopolymer impurities. The reversible aggregation of these block copolymers in aqueous media was studied with 1H NMR spectroscopy and dynamic light scattering. Finally, an example of core‐crosslinked micelles was demonstrated by the addition of a difunctional crosslinking agent to a micellar solution of the parent block copolymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1724–1734, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号