首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of pyridine‐stabilized silylene complexes [(η5‐C5Me4R)(CO)2(H)W?SiH(py)(Tsi)] (R=Me, Et; py=pyridine; Tsi=C(SiMe3)3) with an N‐heterocyclic carbene MeIiPr (1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene) caused deprotonation to afford anionic silylene complexes [(η5‐C5Me4R)(CO)2W?SiH(Tsi)][HMeIiPr] (R=Me ( 1‐Me ); R=Et ( 1‐Et )). Subsequent oxidation of 1‐Me and 1‐Et with pyridine‐N‐oxide (1 equiv) gave anionic η2‐silaaldehydetungsten complexes [(η5‐C5Me4R)(CO)2W{η2‐O?SiH(Tsi)}][HMeIiPr] (R=Me ( 2‐Me ); R=Et ( 2‐Et )). The formation of an unprecedented W‐Si‐O three‐membered ring was confirmed by X‐ray crystal structure analysis.  相似文献   

2.
The preparation and characterization of a series of neutral rare‐earth metal complexes [Ln(Me3TACD)(η3‐C3H5)2] (Ln=Y, La, Ce, Pr, Nd, Sm) supported by the 1,4,7‐trimethyl‐1,4,7,10‐tetraazacyclododecane anion (Me3TACD?) are reported. Upon treatment of the neutral allyl complexes [Ln(Me3TACD)(η3‐C3H5)2] with Brønsted acids, monocationic allyl complexes [Ln(Me3TACD)(η3‐C3H5)(thf)2][B(C6X5)4] (Ln=La, Ce, Nd, X=H, F) were isolated and characterized. Hydrogenolysis gave the hydride complexes [Ln(Me3TACD)H2]n (Ln=Y, n=3; La, n=4; Sm). X‐ray crystallography showed the lanthanum hydride to be tetranuclear. Reactivity studies of [Ln(Me3TACD)R2]n (R=η3‐C3H5, n=0; R=H, n=3,4) towards furan derivatives includes hydrosilylation and deoxygenation under ring‐opening conditions.  相似文献   

3.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

4.
We report the synthesis of heterobimetallic Ta–Rh and Ta–Ir complexes bridged by a 2,5‐di‐tert‐butyltantalacyclopentadiene fragment. A mononuclear 2,5‐di‐tert‐butyltantalacyclopentadiene complex 2 was prepared by the reaction of (η2‐Me3SiC≡CSiMe3)TaCl3(dme) ( 1 ) with excess amounts of 3,3‐dimethylbut‐1‐yne in the presence of AlCl3. The tantalacyclopentadiene moiety of complex 2 served as a η4‐diene unit for coordinating the Rh and Ir centers; treatment of 2 with [M(μ‐Cl)(cod)]2 (M = Rh and Ir; cod = cycloocta‐1,5‐diene) in toluene gave TaRh(μ‐C4H2tBu2)Cl4(cod) ( 3 ) and [TaIr(μ‐C4H2tBu2)Cl4]2 ( 5 ), respectively. The X‐Ray diffraction study of 3 revealed a dative bond from an electron‐rich Rh toward an electron‐deficient Ta. Upon dissolving 3 in THF, [(thf)TaRh(μ‐C4H2tBu2)Cl3]2(μ‐Cl)2 ( 4 ) was isolated together with free cycloocta‐1,5‐diene. When complex 5 was treated with 1,2‐bis‐(diphenylphosphino)ethane (dppe), a monomeric Ta–Ir complex, TaIr(μ‐C4H2tBu2)Cl4(dppe) ( 6 ), was isolated. Ta–Rh and Ta–Ir heterobimetallic complexes 3 and 6 were reduced by a two‐electron process upon reaction with 2,3,5,6‐tetramethyl‐1,4‐bis(trimethylsilyl)‐1,4‐dihydropyrazine ( 7a : Si‐Me4‐DHP) or 2,5‐dimethyl‐1,4‐bis(trimethylsilyl)‐1,4‐dihydropyrazine ( 7b : Si‐Me2‐DHP) to afford the corresponding complexes TaM(μ‐C4H2tBu2)Cl2(L) ( 8 : M = Rh, L = cod; 9 : M = Ir, L = dppe), where the metallacycle moiety was assigned to have a tantalacyclopentadiene fragment with a large contribution of a tantalacyclopentatriene canonical form.  相似文献   

5.
Two new optically active bidentate N,N‐ligands, DMIQCI ( 3a ) and DMIQCD ( 3b ), containing a quinuclidine core and an imidazolidin‐2‐imine unit, were synthesized. The reaction of these ligands with [(η5‐C5Me5)RuCl]4 afforded the brick‐red ruthenium(II) complexes [(η5‐C5Me5)Ru(DMIQCI)Cl] ( 4 ) and [(η5‐C5Me5)Ru(DMIQCD)Cl] ( 5 ), which were used as catalysts in the transfer hydrogenation of acetophenone in boiling 2‐propanol. The reactions of 3a and 3b with [(COD)PdCl2] (COD = 1,5‐cycloocta‐diene) and with [(DME)NiBr2] (DME = 1,2‐dimethoxyethane) afforded the square‐planar palladium(II) complexes [(DMIQCI)PdCl2] ( 7 ) and [(DMIQCD)PdCl2] ( 8 ) or the tetrahedral nickel(II) complexes [(DMIQCI)NiBr2] ( 9 ) and [(DMIQCD)NiBr2] ( 10 ), respectively. The X‐ray crystal structures of 4 , 7 , 9· THF, and 10 are reported.  相似文献   

6.
Half-sandwich dibenzyl complexes of scandium have been prepared by stepwise treatment of scandium trichloride with lithium derivatives of silyl-functionalized tetramethylcyclopentadienes (C5Me4H)SiMe2R (R = Me, Ph) and benzyl magnesium chloride. The resulting complexes [Sc(η5-C5Me4SiMe3)(CH2Ph)2(THF)] and [Sc(η5-C5Me4SiMe2Ph)(CH2Ph)2(1,4-dioxane)] show structure related to that of the corresponding bis(trimethylsilylmethyl) compounds [Sc(η5-C5Me4SiMe2R)(CH2SiMe3)2(THF)]. The four-coordinate complexes display η1-coordinated benzyl ligands without significant interaction of the ipso-carbon of the phenyl moiety. Conversion of [Sc(η5-C5Me4SiMe3)(CH2Ph)2(THF)] into the cationic species by treatment with triphenylborane in THF led to the formation of a stable charge separated complex [Sc(η5-C5Me4SiMe3)(CH2Ph)(THF)x][BPh3(CH2Ph)]. Benzyl cation formed using [Ph3C][B(C6F5)4] in toluene resulted in a moderately active syndiospecific styrene polymerization catalyst.  相似文献   

7.
A new series of monoselenoquinone and diselenoquinone π complexes, [(η6p‐cymene)Ru(η4‐C6R4SeE)] (R=H, E=Se ( 6 ); R=CH3, E=Se ( 7 ); R=H, E=O ( 8 )), as well as selenolate π complexes [(η6p‐cymene)Ru(η5‐C6H3R2Se)][SbF6] (R=H ( 9 ); R=CH3 ( 10 )), stabilized by arene ruthenium moieties were prepared in good yields through nucleophilic substitution reactions from dichlorinated‐arene and hydroxymonochlorinated‐arene ruthenium complexes [(η6p‐cymene)Ru(C6R4XCl)][SbF6]2 (R=H, X=Cl ( 1 ); R=CH3, X=Cl ( 2 ); R=H, X=OH ( 3 )) as well as the monochlorinated π complexes [(η6p‐cymene)Ru(η5‐C6H3R2Cl)][SbF6]2 (R=H ( 4 ); R=CH3 ( 5 )). The X‐ray crystallographic structures of two of the compounds, [(η6p‐cymene)Ru(η4‐C6Me4Se2)] ( 7 ) and [(η6p‐cymene)Ru(η4‐C6H4SeO)] ( 8 ), were determined. The structures confirm the identity of the target compounds and ascertain the coordination mode of these unprecedented ruthenium π complexes of selenoquinones. Furthermore, these new compounds display relevant cytotoxic properties towards human ovarian cancer cells.  相似文献   

8.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

9.
The reaction of [Cp*MCl4] (M = Nb, Ta; Cp* = C5Me5) with PH2R in toluene at room temperature gives the primary phosphine complexes [Cp*MCl4(PH2R)] [Cp* = C5Me5; M = Nb: R = But ( 1a ), Ad ( 2a ), Cy ( 3a ), Ph ( 4a ), 2, 4, 6‐Me3C6H2 (Mes) ( 5a ); M = Ta: R = But ( 1b ), Ad ( 2b ), Cy ( 3b ), Ph ( 4b ), Mes ( 5b )] in high yield. 1—5 were characterized spectroscopically (NMR, IR, MS) and by crystal structure determinations. The starting material [Cp*TaCl4] is monomeric in the solid state, as shown by crystal structure determination.  相似文献   

10.
Molecular and Crystal Structure of Bis[chloro(μ‐phenylimido)(η5‐pentamethylcyclopentadienyl)tantalum(IV)](Ta–Ta), [{TaCl(μ‐NPh)Cp*}2] Despite the steric hindrance of the central atom in [TaCl2(NPh)Cp*] (Ph = C6H5, Cp* = η5‐C5(CH3)5), caused by the Cp* ligand, the imido‐ligand takes a change in bond structure when this educt is reduced to the binuclear complex [{TaCl(μ‐NPh)Cp*}2] in which tantalum is stabilized in the unusual oxidation state +4.  相似文献   

11.
A dinuclear tantalum complex, [Ta2Cl6(μ‐C4Et4)] ( 2 ), bearing a tantallacyclopentadiene moiety, was synthesized by treating [(η2‐EtC?CEt)TaCl3(DME)] ( 1 ) with AlCl3. Complex 2 and its Lewis base adducts, [Ta2Cl6(μ‐C4Et4)L] (L=THF ( 3 a ), pyridine ( 3 b ), THT ( 3 c )), served as more active catalysts for cyclotrimerization of internal alkynes than 1 . During the reaction of 3 a with 3‐hexyne, we isolated [Ta2Cl4(μ‐η44‐C6Et6)(μ‐η22‐EtC?CEt)] ( 4 ), sandwiched by a two‐electron reduced μ‐η44‐hexaethylbenzene and a μ‐η22‐3‐hexyne ligand, as a product of an intermolecular cyclization between the metallacyclopentadiene moiety and 3‐hexyne. The formation of arene complexes [Ta2Cl4(μ‐η44‐C6Et4Me2)(μ‐η22‐Me3SiC?CSiMe3)] ( 7 b ) and [Ta2Cl4(μ‐η44‐C6Et4RH)(μ‐η22‐Me3SiC?CSiMe3)] (R=nBu ( 8 a ), p‐tolyl ( 8 b )) by treating [Ta2Cl4(μ‐C4Et4)(μ‐η22‐Me3SiC?CSiMe3)] ( 6 ) with 2‐butyne, 1‐hexyne, and p‐tolylacetylene without any isomers, at room temperature or low temperature were key for clarifying the [4+2] cycloaddition mechanism because of the restricted rotation behavior of the two‐electron reduced arene ligands without dissociation from the dinuclear tantalum center.  相似文献   

12.
A series of nickel complexes, including Ni(acac)2, (C5H5)Ni(η3‐allyl), and [NiMe4Li2(THF)2]2, that were activated with modified methylaluminoxane (MMAO) exhibited high catalytic activity for the polymerization of methyl methacrylate (MMA) but showed no catalytic activity for the polymerization of ethylene and 1‐olefins. The resulting polymers exhibited rather broad molecular weight distributions and low syndiotacticities. In contrast to these initiators, the metallocene complexes (C5H5)2Ni, (C5Me5)2Ni, (Ind)2Ni, and (Me3SiC5H4)2Ni provided narrower molecular weight distributions at 60 °C when these initiator were activated with MMAO. Half‐metallocene complexes such as (C5H5)NiCl(PPh3), (C5Me5)NiCl(PPh3), and (Ind)NiCl(PPh3) produced poly(methyl methacrylate) (PMMA) with much narrower molecular weight distributions when the polymerization was carried out at 0 °C. Ni[1,3‐(CF3)2‐acac]2 generated PMMA with high syndiotacticity. The NiR(acac)(PPh3) complexes (R = Me or Et) revealed high selectivity in the polymerization of isoprene that produced 1,2‐/3,4‐polymer at 0 °C exclusively, whereas the polymerization at 60 °C resulted in the formation of cis‐1,4‐rich polymers. The polymerization of ethylene with Ni(1,3‐tBu2‐acac)2 and Ni[1,3‐(CF3)2‐acac]2 generated oligo‐ethylene with moderate catalytic activity, whereas the reaction of ethylene with Ni(acac)2/MMAO produced high molecular weight polyethylene. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4764–4775, 2000  相似文献   

13.
Imine complexes [IrCl(η5‐C5Me5){κ1‐NH=C(H)Ar}{P(OR)3}]BPh4 ( 1 , 2 ) (Ar = C6H5, 4‐CH3C6H4; R = Me, Et) were prepared by allowing chloro complexes [IrCl25‐C5Me5){P(OR)3}] to react with benzyl azides ArCH2N3. Bis(imine) complexes [Ir(η5‐C5Me5){κ1‐NH=C(H)Ar}2{P(OR)3}](BPh4)2 ( 3 , 4 ) were also prepared by reacting [IrCl25‐C5Me5){P(OR)3}] first with AgOTf and then with benzyl azide. Depending on the experimental conditions, treatment of the dinuclear complex [IrCl25‐C5Me5)]2 with benzyl azide yielded mono‐ [IrCl25‐C5Me5){κ1‐NH=C(H)Ar}] ( 5 ) and bis‐[IrCl(η5‐C5Me5){κ1‐NH=C(H)Ar}2]BPh4 ( 6 ) imine derivatives. In contrast, treatment of chloro complexes [IrCl25‐C5Me5){P(OR)3}] with phenyl azide C6H5N3 gave amine derivatives [IrCl(η5‐C5Me5)(C6H5NH2){P(OR)3}]BPh4 ( 7 , 8 ). The complexes were characterized spectroscopically (IR, NMR) and by X‐ray crystal structure determination of [IrCl(η5‐C5Me5){κ1‐NH=C(H)C6H4‐4‐CH3}{P(OEt)3}]BPh4 ( 2b ).  相似文献   

14.
Reaction of tetraphosphine complex [Mo(κ4‐P4)(Ph2PCH2CH2PPh2)] (1; P4 = meso‐o‐C6H4‐(PPhCH2CH2PPh2)2) with E‐1,3‐pentadiene in toluene at 60 °C gave the η4‐diene complex [Mo(η4E‐1,3‐pentadiene)(κ4‐P4)] (2), which is present as a mixture of two isomers due to the orientation of the Me group in the diene ligand. Treatment of 1 with Z‐1,3‐pentadien also resulted in the formation of 2 as the sole product after heating the reaction mixture at 90 °C. Whereas the reaction of 1 with 1,3‐cyclohexadiene at 60 °C afforded the η4‐diene complex [Mo(η4‐cyclohexadiene)(κ4‐P4)] (6), that with cyclopentadiene led to the C‐H bond scission product [η5‐C5H5)MoH(κ3‐P4)] (7). Detailed structures were determined by X‐ray crystallography for 2, 6,and 7, and fluxional feature of 6 in solution was clarified based on the VT‐NMR studies.  相似文献   

15.
Activation of ansa‐zirconocenes of the type Rac [Zr{1‐Me2Si(3‐R‐(η5‐C9H5))(3‐R′‐(η5‐C9H5))}Cl2] [R = Et, R′ = H ( 1 ); R = Pr, R′ = H ( 2 ); and R = Et, R′ = Pr ( 3 ), R, R′ = Me ( 4 ) and R, R′ = Bu ( 5 )] by MAO has been studied by UV–visible spectroscopy. Compounds 1–3 have been tested in the polymerization of ethylene at different Al:Zr ratios. UV–vis spectroscopy was used to determine a correlation between the electronic structures of ( 1–5 ) and their polymerization activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Uranium diazomethanediide complexes can be prepared and their synthesis, structure and reactivity were explored. Reaction of the uranium imido compound [η5-1,2,4-(Me3Si)3C5H2]2U=N(p-tolyl)(dmap) ( 1 ) or [η5-1,3-(Me3C)2C5H3]2U=N(p-tolyl)(dmap) ( 4 ) with Me3SiCHN2 cleanly yields the first isocyanoimido metal complexes [η5-1,2,4-(Me3Si)3C5H2]2U(=NNC)(μ-CNN=)U(dmap)[η5-1,2,4-(Me3Si)3C5H2]2 ( 2 ) and {[η5-1,3-(Me3C)2C5H3]2U[μ-(=NNC)]}6 ( 5 ), respectively. Both compounds exhibit remarkable thermal stability and were fully characterized. According to density functional theory (DFT) studies the bonding between the Cp2U2+ and [NNC]2− moieties is strongly polarized with a significant 5 f orbital contribution, which is also reflected in the reactivity of these complexes. For example, complex 5 acts as a nucleophile toward alkylsilyl halides and engages in a [2+2] cycloaddition with CS2, but no reaction occurs in the presence of internal alkynes.  相似文献   

17.
The reaction of decamethylytterbocene [(η5‐C5Me5)2Yb(THF)2] with SO2 at low temperature gave two new compounds, namely, the YbIII dithionite/sulfinate complex [{(η5‐C5Me5)2Yb(μ3,1κ2O1,3,2κ3O2,2′,4‐S2O4)}2{(η5‐C5Me5)Yb(μ,1κO,2κO′‐C5Me5SO2)}2] ( 1 ) and the YbIII dithionite complex [{(η5‐C5Me5)2Yb}2(μ,1κ2O1,3,2κ2O2,4‐S2O4)] ( 2 ). After extraction of 1 , the mixture was heated to give the dinuclear tetrasulfinate complex [{(η5‐C5Me5)Yb}2(μ,κO,κO’‐C5Me5SO2)4] ( 3 a ). In contrast, from the reaction of [(η5‐C5Me5)2Eu(THF)2] with SO2 only the tetrasulfinate complex [{(η5‐C5Me5)Eu}2(μ,κO,κO’‐C5Me5SO2)4] ( 3 b ) was isolated. Two major reaction pathways were observed: 1) reductive coupling of two SO2 molecules to form the dithionite anion S2O42?; and 2) nucleophilic attack of one metallocene C5Me5 ligand on the sulfur atom of SO2. The compounds presented are the first dithionite and sulfinate complexes of the f‐elements.  相似文献   

18.
The reduction of the (1,3-diformylindenyl)cyclopentadienylruthenium derivatives {η5-1,3-(CHO)2C9H5}RuCp (Cp = C5H5), {η5-1,3-(CHO)2C9H5}RuCp* (Cp* = C5Me5), and {η5-1,3-(CHO)2C9H5}RuCpF (CpF = C5Me4CF3) with NaBH4 or LiAlH4 under mild conditions affords the [1,3-bis(hydroxymethyl)indenyl]cyclopentadienylruthenium complexes {η5-1,3-(CH2OH)2C9H5}RuCp, {η5-1,3-(CH2OH)2C9H5}RuCp*, and {η5-1,3-(CH2OH)2C9H5}-RuCpF, respectively, in good yields.  相似文献   

19.
The addition of reactive carbanions to (η4‐1,3‐diene)Fe(CO)3 complexes at ?78 °C and 25 °C produced putative homoallyl and allyl anion complexes, respectively. Reaction of the reactive intermediates with 2‐(phenylsulfonyl)‐3‐phenyloxaziridine afforded nucleophilic substituted (η4‐1,3‐diene)Fe(CO)3 complexes.  相似文献   

20.
A series of titanium complexes with ansa‐(fluorenyl)(cyclododecylamido) ligands, Me2Si(η3‐R)(N‐c‐C12H23)TiMe2 [R = fluorenyl ( 5 ), 2,7‐tBu2fluorenyl ( 6 ), 3,6‐tBu2fluorenyl ( 7 )], was synthesized. The crystal structure of complex 6 revealed η3‐coordination of the fluorenyl moiety to the metal. Upon activation with trialkylaluminum‐free modified methylaluminoxane, complexes 5 – 7 as well as the corresponding tBu amide complexes, Me2Si(η3‐R)(NtBu)TiMe2 [R = fluorenyl ( 2 ), 2,7‐tBu2fluorenyl ( 3 ), 3,6‐tBu2fluorenyl ( 4 )], were adopted as the catalysts for the copolymerization of ethylene (E) and isobutylene (IB). Among these complexes, complex 6 was found to achieve the highest IB incorporation to produce alternating E‐IB copolymers. Complex 6 system also achieved copolymerization of E and limonene. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号