首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 100 毫秒
1.
Synthesis and Structures of Sr6P8 Polyhedra in Mixed Phosphanides/Phosphandiides of Strontium The strontiation of H2PSiiPr3 ( 1 ) with (THF)2Sr[N(SiMe3)2]2 in THF yields colorless tetrakis(tetrahydrofuran‐O)strontium bis(triisopropylsilylphosphanide) ( 3 ). The central alkaline earth metal atom has an octahedral environment with the phosphanide ligands in trans position. The homometalation in toluene leads to the elimination of 1 and THF. Cooling of this solution gives crystals of colorless tetrakis(tetrahydrofuran‐O)hexastrontium‐tetrakis(triisopropylsilylphosphanide)‐tetrakis(triisopropylsilylphosphandiide) ( 4 ). The equimolar reaction of H2PSitBu3 ( 2 ) with (THF)2Sr[N(SiMe3)2]2 in toluene yields in the first step heteroleptic dimeric {(Me3Si)2NSr(THF)2[P(H)SitBu3]}2 ( 5 )2. This compounds monomerizes in THF to (Me3Si)2N–Sr(THF)4[P(H)SitBu3] ( 6 ), which forms an equilibrium with the homoleptic dismutation products (THF)2Sr[N(SiMe3)2]2 and (THF)4Sr[P(H)SitBu3]2 ( 7 ). Compound ( 5 )2 undergoes a intramolecular strontiation and bis(tetrahydrofuran‐O)hexastrontium‐tetrakis[tri(tert‐butyl)silylphosphanide]‐tetrakis[tri(tert‐butyl)silylphosphandiide] ( 8 ) is isolated. The central Sr6P8‐polyhedra of 4 and 8 are very similar.  相似文献   

2.
Synthesis, Spectroscopic Characterization, and Molecular Structures of Selected Lewis‐Base Adducts of the Alkali Metal Tri(tert‐butyl)silylphosphanides The metalation of tri(tert‐butyl)silylphosphane with butyllithium and the bis(trimethylsilyl)amides of sodium, potassium, and rubidium yields quantitatively the corresponding alkali metal tri(tert‐butyl)silylphosphanides, which crystallize after addition of appropriate Lewis‐bases as dimeric (DME)LiP(H)SitBu3 ( 1 ), chain‐like (DME)NaP(H)SitBu3 ( 2 ), monomeric ([18]Krone‐6)KP(H)SitBu3 ( 3 ), and dimeric (TMEDA)1.5RbP(H)SitBu3 ( 4 ). The reaction of H2PSitBu3 with cesium bis(trimethylsilyl)amide at room temperature gives monocyclic and tetrameric cesium tri(tert‐butyl)silylphosphanide ( 5 ) with two additional coordinated CsN(SiMe3)2 molecules. At 80 °C this complex reacts with excess of phosphane to the tetrameric toluene adduct (η6‐Toluol)CsP(H)SitBu3 ( 6 ) which contains a central Cs4P4‐heterocubane fragment. The constitution of these compounds was verified by X‐ray structure determinations.  相似文献   

3.
Structural Characterization of Bis(metallated) Derivatives of 3, 3‐Dimethyl‐1, 5‐bis(trimethylsilyl)‐1, 5‐diaza‐pentane with Lithium and Aluminum and of two Donor‐substituted Digallanes The diaminopropane derivative Me2C[CH2N(H)SiMe3]2 is metallated with n‐butyllithium and lithium tetrahydridoaluminate to obtain Me2C[CH2N(Li)SiMe3]2 and Me2C[CH2N(Li)SiMe3][CH2N(AlH2)SiMe3], respectively. Both compounds exhibit a central eight‐membered ring, Li4N4 or Li2Al2N4. Me2C[CH2N(Li)SiMe3]2 reacts with Ga2Cl4 · 2dioxane under formation of the corresponding tetra(amino)digallane. This is monomeric, in contrast to a dimeric tetraalkoxy‐substituted digallane, Ga4OtBu8. All compounds were characterized by single crystal X‐ray crystallography.  相似文献   

4.
The metalation of HP(SiMe3)2 with Y[CH(SiMe3)2]3 gives the homoleptic {Y[P(SiMe3)2]3}2 (1) which crystallizes from toluene in the monoclinic space group P21/c. The yttrium atoms are in a distorted tetrahedral environment with Y‐P bond lengths of 267.7 and 284.8 pm to the terminal and bridging substituents, respectively. The metathesis reaction of [1, 3‐(Me3Si)2C5H3]2YCl with KPSitBu3 yields (tetrahydrofuran‐O)‐1, 1', 3, 3'‐tetrakis(trimethylsilyl)yttrocene‐tri(tert‐butyl)silylphosphanide ( 2 ). The molecular structure of 2 in solution was deduced by NMR spectroscopy and X‐ray crystallography. The coupling constants 1J(Y, P) and 1J(P, H) show values of 144.0 Hz and 201.0 Hz, respectively.  相似文献   

5.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXII. The Formation of [η2‐{tBu–P=P–SiMe3}Pt(PR3)2] from (Me3Si)tBuP–P=P(Me)tBu2 and [η2‐{C2H4}Pt(PR3)2] (Me3Si)tBuP–P = P(Me)tBu2 reacts with [η2‐{C2H4}Pt(PR3)2] yielding [η2‐{tBu–P=P–SiMe3}Pt(PR3)2]. However, there is no indication for an isomer which would be the analogue to the well known [η2‐{tBu2P–P}Pt(PPh3)2]. The syntheses and NMR data of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] and [η2‐{tBu–P=P–SiMe3}Pt(PMe3)2] as well as the results of the single crystal structure determination of [η2‐{tBu–P=P–SiMe3}Pt(PPh3)2] are reported.  相似文献   

6.
Formation and Reactions of the CH2Li‐Derivatives of tBu2P–P=P(CH3)tBu2 and (Me3Si)tBuP–P=P(CH3)tBu2 With nBuLi, (Me3Si)tBuP–P=P(CH3)tBu2 ( 1 ) and tBu2P–P=P(CH3)tBu2 ( 2 ) yield (Me3Si)tBuP–P=P(CH2Li)tBu2 ( 3 ) and tBu2P–P=P(CH2Li)tBu2 ( 4 ), wich react with Me3SiCl to give (Me3Si)tBuP–P=P(CH2–SiMe3)tBu2 ( 5 ) and tBu2P–P=P(CH2–SiMe3)tBu2 ( 6 ), respectively. With tBu2P–P(SiMe3)–PtBuCl ( 7 ), compound 3 forms 5 as well as the cyclic products [H2C–P(tBu)2=P–P(tBu)–PtBu] ( 8 ) and [H2C–P(tBu)2=P–P(PtBu2)–P(tBu)] ( 9 ). Also 3 forms 8 with tBuPCl2. The cleavage of the Me3Si–P‐bond in 1 by means of C2Cl6 or N‐bromo‐succinimide yields (Cl)tBuP–P=P(CH3)tBu2 ( 10 ) or (Br)tBuP–P=P(CH3)tBu2 ( 11 ), resp. With LiP(SiMe3)2, 10 forms (Me3Si)2P–P(tBu)–P=P(CH3)tBu2 ( 12 ), and Et2P–P(tBu)–P=P(CH3)tBu2 ( 13 ) with LiPEt2. All compounds are characterized by 31P NMR Data and mass spectra; the ylide 5 and the THF adduct of 4 additionally by X‐ray structure analyses.  相似文献   

7.
tert‐Butyl(dichloromethyl)bis(trimethylsilyl)silane ( 4 ), prepared by the reaction of tert‐butylbis(trimethylsilyl)silane with trichloromethane and potassium tert‐butoxide, reacted with 2,4,6‐triisopropylphenyllithium (TipLi) (molar ratio 1 : 2) at room temperature to give (after hydrolytic workup) the silanol tBu(2,4,6‐iPr3C6H2)Si(OH)–CH(SiMe3)2 ( 15 ). The formation of 15 is discussed as proceeding through the indefinitely stable silene tBu(2,4,6‐iPr3C6H2)Si=C(SiMe3)2 ( 13 ), but attempts to isolate the compound failed. Treatment of (dibromomethyl)ditert‐butyl(trimethylsilyl)silane ( 7 ), made from tBu2(Me3Si)SiH, HCBr3 and KOtBu, with methyllithium (1 : 3) at –78 °C afforded tBu2MeSi–CHMeSiMe3 ( 19 ); 7 and phenyllithium (1 : 3) under similar conditions gave tBu2PhSi–CH2SiMe3 ( 20 ). The reaction paths leading to 15 , 19 and 20 are discussed. Reduction of 7 with lithium in THF produced the substituted ethylene tBu2(Me3Si)SiCH=CHSitBu2SiMe3 ( 21 ). For 21 the results of an X‐ray structural analysis are given.  相似文献   

8.
The synthesis of a series of ansa‐titanocene dichlorides [Cp′2TiCl2] (Cp′=bridged η5‐tetramethylcyclopentadienyl) and the corresponding titanocene bis(trimethylsilyl)acetylene complexes [Cp′2Ti(η2‐Me3SiC2SiMe3)] is described. The ethanediyl‐bridged complexes [C2H4(C5Me4)2TiCl2] ( 2 ‐Cl2) and [C2H4(C5Me4)2Ti(η2‐Me3SiC2SiMe3)] ( 2‐ btmsa; btmsa=η2‐Me3SiC2SiMe3) can be obtained from the hitherto unknown calcocenophane complex [C2H4(C5Me4)2Ca(THF)2] ( 1 ). Furthermore, a heterodiatomic bridging unit containing both, a dimethylsilyl and a methylene group was introduced to yield the ansa‐titanocene dichloride [Me2SiCH2(C5Me4)2TiCl2] ( 3 ‐Cl2) and the bis(trimethylsilyl)acetylene complex [Me2SiCH2(C5Me4)2Ti(η2‐Me3SiC2SiMe3)] ( 3 ‐btmsa). Besides, tetramethyldisilyl‐ and dimethylsilyl‐bridged metallocene complexes (structural motif 4 and 5 , respectively) were prepared. All ansa‐titanocene alkyne complexes were reacted with stoichiometric amounts of water; the hydrolysis products were isolated as model complexes for the investigation of the elemental steps of overall water splitting. Compounds 1 , 2 ‐btmsa, 2 ‐(OH)2, 3 ‐Cl2, 3 ‐btmsa, 4 ‐(OH)2, 3 ‐alkenyl and 5 ‐alkenyl were characterised by X‐ray diffraction analysis.  相似文献   

9.
Investigations on the Reactivity of [Me2AlP(SiMe3)2]2 with Base‐stabilized Organogalliumhalides and ‐hydrides [Me2AlP(SiMe3)2]2 ( 1 ) reacts with dmap?Ga(Cl)Me2, dmap?Ga(Me)Cl2, dmap?GaCl3 and dmap?Ga(H)Me2 with Al‐P bond cleavage and subsequent formation of heterocyclic [Me2GaP(SiMe3)2]2 ( 2 ) as well as dmap?AlMexCl3?x (x = 3 8 ; 2 3 ; 1 4 ; 0 5 ). The reaction between equimolar amounts of dmap?Al(Me2)P(SiMe3)2 and dmap?Ga(t‐Bu2)Cl yield dmap?Ga(t‐Bu2)P(SiMe3)2 ( 6 ) and dmap?AlMe2Cl ( 3 ). 2 – 8 were characterized by NMR spectroscopy, 2 and 6 also by single crystal X‐ray diffraction.  相似文献   

10.
The metal complexes [Ni{N(Ar)C(R)C(H)Ph}2) ( 2 ) (Ar = 2,6‐Me2C6H3, R = SiMe3), [Ti(Cp2){N(R)C(But)C(H)R}] ( 3 ), M{N(R)C(But)C(H)R}I [M = Ni ( 4 a ) or Pd ( 4 b )] and [M{N(R)C(But)C(H)R}I(PPh3)] [M = Ni ( 5 a ) or Pd ( 5 b )] have been prepared from a suitable metal halide and lithium precursor of ( 2 ) or ( 3 ) or, alternatively from [M(LL)2] (M = Ni, LL = cod; M = Pd, LL = dba) and the ketimine RN = C(But)CH(I)R ( 1 ). All compounds, except 4 were fully characterised, including the provision of X‐ray crystallographic data for complex 5 a .  相似文献   

11.
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XVII [1] [Co(g5‐Me5C5)(g3tBu2PPCH–CH3)] from [Co(g5‐Me5C5)(g2‐C2H4)2] and tBu2P–P=P(Me)tBu2 [Co(η5‐Me5C5)(η3tBu2PPCH–CH3)] 1 is formed in the reaction of [Co(η5‐Me5C5)(η2‐C2H4)2] 2 with tBu2P–P 4 (generated from tBu2P–P=P(Me)tBu2 3 ) by elimination of one C2H4 ligand and coupling of the phosphinophosphinidene with the second one. The structure of 1 is proven by 31P, 13C, 1H NMR spectra and the X‐ray structure analysis. Within the ligand tBu2P1P2C1H–CH3 in 1 , the angle P1–P2–C1 amounts to 90°. The Co, P1, P2, C1 atoms in 1 look like a „butterfly”︁. The reaction of 2 with a mixture of tBu2P–P=P(Me)tBu2 3 and tBu–C?P 5 yields [Co(η5‐Me5C5){η4‐(tBuCP)2}] 6 and 1 . While 6 is spontaneously formed, 1 appears only after complete consumption of 5 .  相似文献   

12.
Tris[bis(trimethylsilyl)amido]zincates of Lithium and Calcium Calcium-bis[bis(trimethylsilyl)amide] and Bis[bis(trimethylsilyl)amido]zinc yield in 1,2-dimethoxyethane quantitatively Calcium-bis{tris[bis(trimethylsilyl)- amido]zincate} · 3DME. When THF is chosen as a solvent, the two reactants and the zincate form a temperature-independent equilibrium, whereas in benzene no reaction occurs. The tris[bis(trimethylsilyl)amido]zincate anion displays characteristic 13C{1H) and 29Si{1H] chemical shifts of 7 and ?8 ppm, respectively; the nature of the solvent, the cation and the complexating ligands don't influence the IR nor NMR data of the zincate anion and thus verify that [Ca(DME)3]2+ and {Zn[N(SiMe3 2]3}? appear as solvent separated ions, which is also confirmed by their insolubility in hydrocarbons.  相似文献   

13.
Reactions of carbon monoxide (CO) with tBu2MeSiLi and (E)‐(tBu2MeSi)(tBuMe2Si)C=Si(SiMetBu2)Li?2 THF ( 4 ) were studied both experimentally and computationally. Reaction of tBu2MeSiLi with CO in hexane yields the first stable tetra‐silyl di‐ketyl biradical [(tBu2MeSi)2COLi].2 ( 3 ). Reaction of 4 with CO yields selectively and quantitatively the first reported 1‐silaallenolate, (tBu2MeSi)(tBuMe2Si)C=C=Si(SiMetBu2)OLi?THF ( 5 ). Both 3 and 5 were characterized by X‐ray crystallography and biradical 3 also by EPR spectroscopy. Silaallenolate 5 reacts with Me3SiCl to produce siloxy substituted 1‐silaallene (tBu2MeSi)(tBuMe2Si)C=C=Si(SiMetBu2)OSiMe3. The reaction of 4 with CO provides a new route to 1‐silaallenes. The mechanisms of the reactions of tBuMe2SiLi and of 4 with CO were studied by DFT calculations.  相似文献   

14.
The trans‐bis(trimethylsilyl)chalcogenolate palladium complexes, trans‐[Pd(ESiMe3)2(PnBu3)2] [E = S ( 1 ) and Se ( 2 )] were synthesized in good yields and high purity by reacting trans‐[PdCl2(PBu3)2] with LiESiMe3 (E = S, Se), respectively. These complexes were characterized by 1H, 13C{1H}, 31P{1H} (and 77Se{1H}) NMR spectroscopy and single‐crystal X‐ray analysis. The reaction of 2 with propionyl chloride led to the formation of trans‐[Pd(SeC(O)CH2CH3)2(PnBu3)2] ( 3 ), a trans‐bis(selenocarboxylato) palladium complex and thus established a new method for the formation of this type of complex. Complex 3 was characterized by 1H, 13C{1H}, 31P{1H} and 77Se{1H} NMR spectroscopy and a single‐crystal X‐ray structure analysis.  相似文献   

15.
We report the synthesis of heterobimetallic Ta–Rh and Ta–Ir complexes bridged by a 2,5‐di‐tert‐butyltantalacyclopentadiene fragment. A mononuclear 2,5‐di‐tert‐butyltantalacyclopentadiene complex 2 was prepared by the reaction of (η2‐Me3SiC≡CSiMe3)TaCl3(dme) ( 1 ) with excess amounts of 3,3‐dimethylbut‐1‐yne in the presence of AlCl3. The tantalacyclopentadiene moiety of complex 2 served as a η4‐diene unit for coordinating the Rh and Ir centers; treatment of 2 with [M(μ‐Cl)(cod)]2 (M = Rh and Ir; cod = cycloocta‐1,5‐diene) in toluene gave TaRh(μ‐C4H2tBu2)Cl4(cod) ( 3 ) and [TaIr(μ‐C4H2tBu2)Cl4]2 ( 5 ), respectively. The X‐Ray diffraction study of 3 revealed a dative bond from an electron‐rich Rh toward an electron‐deficient Ta. Upon dissolving 3 in THF, [(thf)TaRh(μ‐C4H2tBu2)Cl3]2(μ‐Cl)2 ( 4 ) was isolated together with free cycloocta‐1,5‐diene. When complex 5 was treated with 1,2‐bis‐(diphenylphosphino)ethane (dppe), a monomeric Ta–Ir complex, TaIr(μ‐C4H2tBu2)Cl4(dppe) ( 6 ), was isolated. Ta–Rh and Ta–Ir heterobimetallic complexes 3 and 6 were reduced by a two‐electron process upon reaction with 2,3,5,6‐tetramethyl‐1,4‐bis(trimethylsilyl)‐1,4‐dihydropyrazine ( 7a : Si‐Me4‐DHP) or 2,5‐dimethyl‐1,4‐bis(trimethylsilyl)‐1,4‐dihydropyrazine ( 7b : Si‐Me2‐DHP) to afford the corresponding complexes TaM(μ‐C4H2tBu2)Cl2(L) ( 8 : M = Rh, L = cod; 9 : M = Ir, L = dppe), where the metallacycle moiety was assigned to have a tantalacyclopentadiene fragment with a large contribution of a tantalacyclopentatriene canonical form.  相似文献   

16.
The potassium dihydrotriazinide K(LPh,tBu) ( 1 ) was obtained by a metal exchange route from [Li(LPh,tBu)(THF)3] and KOtBu (LPh,tBu = [N{C(Ph)=N}2C(tBu)Ph]). Reaction of 1 with 1 or 0.5 equivalents of SmI2(thf)2 yielded the monosubstituted SmII complex [Sm(LPh,tBu)I(THF)4] ( 2 ) or the disubstituted [Sm(LPh,tBu)2(THF)2] ( 3 ), respectively. Attempted synthesis of a heteroleptic SmII amido‐alkyl complex by the reaction of 2 with KCH2Ph produced compound 3 due to ligand redistribution. The YbII bis(dihydrotriazinide) [Yb(LPh,tBu)2(THF)2] ( 4 ) was isolated from the 1:1 reaction of YbI2(THF)2 and 1 . Molecular structures of the crystalline compounds 2 , 3· 2C6H6 and 4· PhMe were determined by X‐ray crystallography.  相似文献   

17.
Reactions of (tBu)2P? P?P(Br)tBu2 with LiP(SiMe3)2, LiPMe2 and LiMe, LitBu and LinBu The reactions of (tBu)2P? P?P(Br)tBu2 1 with LiP(SiMe3)2 2 yield (Me3Si)2P? P(SiMe3)2 4 and P[P(tBu)2]2P(SiMe3)2 5 , whereas 1 with LiPMe2 2 yields P2Me4 6 and P[(tBu)2]2PMe2 7 . 1 with LiMe yields the ylid tBu2P? P?P(Me)tBu2 (main product) and [tBu2P]2PMe 15 . In the reaction of 1 with tBuLi [tBu2P]2PH 11 is the main product and also tBuP? P?P(R)tBu2 21 is formed. The reaction of 1 with nBuLi leads to [tBu2P]2PnBu 17 (main product) and tBu2P? P?P(nBu)tBu2 22 (secondary product).  相似文献   

18.
The synthesis, characterization and ε‐caprolactone polymerization behavior of lanthanide amido complexes stabilized by ferrocene‐containing N‐aryloxo functionalized β‐ketoiminate ligand FcCOCH2C(Me)N(2‐HO‐5‐But‐C6H3) (LH2, Fc = ferrocenyl) are described. The lanthanide amido complexes [LLnN(SiMe3)2(THF)]2 [Ln = Nd ( 1 ), Sm ( 2 ), Yb ( 3 ), Y ( 4 )] were synthesized in good yields by the amine elimination reactions of LH2 with Ln[N(SiMe3)2]3(µ‐Cl)Li(THF)3 in a 1:1 molar ratio in THF. These complexes were characterized by IR spectroscopy and elemental analysis, and 1H NMR spectroscopy was added for the analysis of complex 4 . The definitive molecular structures of complexes 1 and 3 were determined by X‐ray diffraction studies. Complexes 1 – 4 can initiate the ring‐opening polymerization of ε‐caprolactone with moderate activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
A series of yttrium and lutetium alkyl complexes [Ln(η5-C5Me4ZNR′-κN)(CH2SiMe3)(THF)n] (Ln = Y, Lu) was prepared by reacting the tris(trimethylsilylmethyl) precursor [Ln(CH2SiMe3)3(THF)2] with different linked amino-cyclopentadienes of the type (C5Me4H)ZNHR′ (Z = SiMe2, CH2SiMe2; R′ = tBu, Ph, C6H4-tBu-4, C6H4-nBu-4). The catalytic activity of these alkyl complexes in the hydrosilylation of 1-decene and styrene using PhSiH3 as reagent was examined under standard conditions. A significant influence of the ligand structure on the catalytic property (turnover frequency, regioselectivity) was observed with the yttrium complex [Y(η5-C5Me4CH2SiMe2NtBu-κN)(CH2SiMe3)(THF)] being the most active for 1-decene hydrosilylation.  相似文献   

20.
Exploiting thiacalix 4 arene and sulfur‐bridged bisphenolates as ligands for bioinorganic studies involving iron(III) requires the prior development of synthetic routes (varying substituents and reaction conditions) to construct complexes with low nuclearities and accessible coordination sites, which was in the focus of this investigation. Treating ptert‐butylthiacalix 4 arene (H4TC) and 1, 4‐dimethyl‐ptert‐butylthiacalix 4 arene (Me2H2TC) with Fe[N(SiMe3)2]3 yielded in the formation of the iron(III) complexes [(Me3SiTC)2Fe2] ( 1 ) and [(Me2TC)3Fe2] ( 3 ), respectively. While 1 is a sandwich compound, in 3 one [Me2TC]2– unit is bridging two [Me2TCFe]+ moieties. Employing thiobisphenolates as ligands it turned out, that in dependence on the residues R and the preparation method it is possible to selectively access sandwich, anionic or neutral complexes, which were shown to contain central high‐spin iron(III) atoms. The syntheses, structures, and electronic properties of three iron(III) bisphenolate complexes, [ClL2Fe]NEt3H ( 4 ), [MeLFeCl2]NEt3H ( 5 ), and [tBuLFeCl(thf)] ( 7 ) are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号