首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doubly functionalized polar norbornenes 3a – 3g substituted by both a variety of ester and cyano groups were polymerized by ring‐opening metathesis polymerization (ROMP) with a Ru carbene complex 2 bearing 3‐bromopyridine as a ligand (third generation Grubbs' catalyst) in a living manner. The successive hydrogenation of the main‐chain double bond in the synthesized living ROMP polymers 4a – 4g with a hydridoruthenium complex was exploited. The comparison of thermal properties of a series of ring‐opening metathesis polymers 4a – 4g with those of their hydrogenated derivatives 5a – 5g revealed the decrease of glass transition temperatures (Tg) but little change of the 5% decomposition temperature (Td5). In all cases examined in this study, a decrease of Tg by hydrogenation was around 20–40 °C, regardless of the ester substitutents. In the presence of the additional PCy3, triethylamine, and methanol after complete consumption of monomer 3a under the living ROMP condition, the tandem ROMP‐hydrogenation of the resulting polymer 4a generated in situ was attained under a H2 (9.8 MPa) atmosphere at 80 °C to afford the hydrogenated polymer 5a , retaining the narrow polydispersity of 1.03. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3314–3325 2008  相似文献   

2.
A methacrylate‐based crosslinking hyperbranced polymers have been synthesized through initiator‐fragment incorporation radical polymerization and used for the temperature stable electro‐optic (EO) polymer application. This polymer consists of methyl methacrylate, 2‐metacryloxyethyl isocyanate, and ethylene glycol dimethacrylate (EGDMA) monomers. The use of EGDMA as a bifunctional unit resulted in the solvent‐soluble crosslinking hyperbranched chain, so that the EO polymer enhanced glass transition temperatures. A phenyl vinylene thiophene vinylene bridge nonlinear optical chromophore was attached to the polymer backbone as the side‐chain by a post‐functionalization reaction. The loading concentration of the chromophore was varied between 30 and 50 wt % by simply changing the mixing ratio of the precursor polymer to the chromophore. The synthesized EO polymers produced optical quality films with a light propagation loss of 0.61 dB/cm in a slab waveguide at 1.31 μm. The electrically poled film had an EO coefficient (r33) of 139 pm/V at 1.31 μm. The EO crosslinking hyperbranced polymer had a high‐glass transition temperature of 170 °C, and exhibited excellent temporal stability of the EO activity at 85 °C for 500 h. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
A simple and generally applicable new synthetic method to prepare second‐order nonlinear optical (NLO) polyimides has been developed. In this approach, side‐chain‐substituted polyimides were synthesized via isocyanato‐terminated prepolymers prepared directly from NLO chromophore‐containing diols Disperse Red 19. Using this technique, the tedious synthesis of the classical diamine monomers and harsh imidization process associated with polyamic acid prepolymers are avoided. The resulting polymers possessed good solubility and high glass‐transition (171–211 °C) and thermal‐decomposition temperatures. The polymers also exhibited excellent film‐forming properties, and good optical‐quality films were easily obtained by spin coating. The second‐order NLO activities of the polymer films were also studied, and several factors that might determine the growth of the second‐order NLO activity were proposed. The polymers obtained exhibit a large second‐order NLO activity (34–52.5 pm/V at 1064 nm). © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2189–2195, 2001  相似文献   

4.
Norbornene polymerization was performed with monocyclopentadienyltitanium tribenzyloxide activated with methylaluminoxane (MAO). The catalyst afforded a pure vinyl‐type polymer at temperatures below 80 °C and at appropriate MAO concentrations. However, at higher temperatures or high MAO concentrations, a portion of the titanium species was pyrolyzed to form an alkylidene compound that catalyzed the ring‐opening metathesis polymerization of norbornene. As a result, both vinyl‐type and ring‐opening polymers were produced under the reaction conditions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1421–1425, 2002  相似文献   

5.
A number of classes of polynorbornenes containing cationic iron moieties within their side chains were prepared via ring‐opening metathesis polymerization with a ruthenium‐based catalyst. The iron‐containing polymers displayed excellent solubility in polar organic solvents. The weight‐average molecular weights of these polymeric materials were estimated to be in the range of 18,000–48,000. Thermogravimetric analysis of these polymers showed two distinct weight losses. The first weight loss was in the range of 204–260 °C and was due to the loss of the metallic moieties, whereas the second weight loss was observed at 368–512 °C and was due to the degradation of the polymer backbone. Cyclic voltammetry studies of the iron‐containing polymers showed that the 18 e? cationic iron centers underwent a reduction to give the neutral 19 e? complexes at half‐wave potential (E1/2) = ?1.105 V. Photolysis of the metallated polymers led to the isolation of the norbornene polymers in very good yields. Differential scanning calorimetry studies showed a sharp increase in the glass‐transition temperatures up to 91 °C when rigid aromatic side chains were incorporated into the norbornene polymers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3053–3070, 2006  相似文献   

6.
In this study, we synthesized polynorbornene (PNB) dicarboximides substituted by monochlorophenyl group (PMCPhNDI) and dichlorophenyl group (PDCPhNDI) via ring‐opening polymerization using a ruthenium catalyst and investigated their thermal, mechanical, and optical properties. We also discussed the performance and application of the functionalized PNB dicarboximide films as flexible substrates for organic light‐emitting devices (OLEDs). The polymer films exhibited good optical transparency with an average transmittance of around 97% in the visible light region and good thermal stability with a 5% degradation temperature of >440°C. The polymers were applied for flexible displays, which were coated on indium tin oxide (ITO) thin films using a radio‐frequency planar magnetron sputtering system with changing the deposition substrate temperatures. A flexible OLED that was fabricated on the ITO‐grown polymer substrates exhibited a performance as comparable to the corresponding ITO‐grown glass substrates. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
A series of naphthyl‐substituted poly(p‐phenylenevinylene)s (2N‐PPV, 4N‐PPV, and NAP‐PPV) has been synthesized and characterized by Fourier transform IR, 1H NMR, and elemental analysis. The polymers possess excellent solubility, high molecular weights, good thermal stability, and high photoluminescence efficiencies. Thermogravimetric analysis reveals the onset of degradation to be 347, 301, and 306 °C for 2N‐PPV, 4N‐PPV, and NAP‐PPV, respectively. The differential scanning calorimetry investigation gives the respective glass‐transition temperature values of 118, 135, and 141 °C. The UV and photoluminescence spectra measurements reveal that the polymers exhibit similar optical properties, indicating that side‐chain substitution has little effect on the optical properties of this series of polymers. Proton NMR measurement of the signal due to tolane–bisbenzyl defects at around 2.7 ppm indicates that all the polymers have negligible amounts of tolane–bisbenzyl defects along the polymer main chain as a result of the steric bulk imposed by the naphthalene side chain. The highest occupied and lowest unoccupied molecular orbital energy levels of the polymers are investigated through cyclic voltammetry. Polymer light‐emitting diodes utilizing the polymers as the emissive layer with a configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Ba/Al are fabricated and evaluated. The diodes emit blue‐green to yellow‐green light with maximum peaks at 518, 542, and 486 nm for 2N‐PPV, 4N‐PPV, and NAP‐PPV, respectively. The respective turn‐on electric fields of the diodes are 0.84, 0.69, and 0.83 MV/cm and the respective maximum external quantum efficiencies are 0.08, 0.54, and 0.02%. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1647–1657, 2004  相似文献   

8.
Block copolymers containing polystyrene and polycyclooctene were synthesized with a ring‐opening metathesis polymerization/chain‐transfer approach. Polystyrene, containing appropriately placed olefins, was prepared by anionic polymerization and served as a macromolecular chain‐transfer agent for the ring‐opening metathesis polymerization of cyclooctene. These unsaturated polymers were subsequently converted to the corresponding saturated triblock copolymers with a simple heterogeneous catalytic hydrogenation step. The molecular and morphological characterization of the block copolymers was consistent with the absence of significant branching in the central polycyclooctene and polyethylene blocks [high melting temperatures (114–127 °C) and levels of crystallinity (17–42%)]. A dramatic improvement in both the long‐range order and the mechanical properties of a microphase‐separated, symmetric polystyrene–polycyclooctene–polystyrene block copolymer sample was observed after fractionation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 361–373, 2007  相似文献   

9.
Amphiphilic block copolymers can be conveniently prepared via convergent syntheses, allowing each individual polymer block to be prepared via the polymerization technique that gives the best architectural control. The convergent “click‐chemistry” route presented here, gives access to amphiphilic diblock copolymers prepared from a ring opening metathesis polymer and polyethylene glycol. Because of the high functional group tolerance of ruthenium carbene initiators, highly functional ring opening metathesis polymerization (ROMP) polymer blocks can be prepared. The described synthetic route allows the conjugation of these polymer blocks with other end‐functional polymers to give well‐defined and highly functional amphiphilic diblock copolymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2913–2921, 2008  相似文献   

10.
A novel doubly polymerizable functional norbornene, 5‐(methacryloyloxyethylamino carboxylmethyl)bicyclo[2.2.1]hept‐2‐ene (NBMOACM), was prepared. The ring‐opening metathesis polymerization (ROMP) of NBMOACM was carried out to prepare polymers with crosslinkable side chains with the Grubbs catalyst. No gel formation occurred during the ROMP of NBMOACM. The 1H NMR spectrum of poly(NBMOACM) showed broad signals between 5.10 and 5.40 ppm, corresponding to the vinyl protons of the cis and trans double bonds of the ring‐opened polymer. Increasing the ratio of the monomer concentration to the catalyst concentration resulted in the formation of higher molecular weight polymers. Poly(NBMOACM) was incorporated into poly(methyl methacrylate) [poly(MMA)] to produce AB crosslinked materials. These crosslinked materials [1 wt % poly(NBMOACM), 10% weight loss temperature = 300 °C in air] had higher thermal stability than pure poly(MMA) (10% weight loss temperature = 276 °C in air). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6287–6298, 2006  相似文献   

11.
The synthesis of aromatic poly(ether imide)s containing spirobifluorene units in the polymer backbone is described. 2,2′‐Bis(3,4‐dicarboxyphenoxy)‐9,9′‐spirobifluorene dianhydride, which was used as a new monomer, was synthesized with 2,2′‐dihydroxy‐9,9′‐spirobifluorene as the starting material. In the spiro‐segment, the rings of the connected bifluorene were orthogonally arranged. This bis(ether anhydride) monomer was employed in reactions with a variety of aromatic diamines to furnish poly(ether imide)s, involving an initial ring‐opening polycondensation and subsequent chemically induced cyclodehydration. Excellent solubility in common organic solvents at room temperature, good optical transparency, and high thermal stability are the prominent characteristic features of these new polymers, which can be attributed to the presence of spiro‐fused orthogonal bifluorene segments along the polymer chain. The glass‐transition temperatures of the polyimides were 240–293 °C, and the 5% weight‐loss temperatures were greater than 500 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 262–268, 2002  相似文献   

12.
Four kinds of functional polyethylene carrying thioester pendants were synthesized via ring‐opening metathesis polymerization (ROMP) of alkyl cyclopent‐3‐enecarbothioate catalyzed by a ruthenium‐based commercial catalyst and subsequent hydrogenation of the ROMP products (alkyl = ethyl, n‐butyl, n‐octyl, or n‐dodecyl). In these polymers the pendant alkyl thioester groups are precisely distributed along the backbone on every five methylene carbons. Chain structure, molecular weight and molecular weight distribution of the polymers were characterized by 1H and 13C NMR, and GPC. The ROMP reactions all reached high monomer conversions, and hydrogenation of the ROMP products were exhaustive. Thermal transitions and side chain crystallization behaviors of the polymer were investigated and characterized by DSC and TGA. Glass transition temperature and melting temperature of these polymers were higher than the counterparts containing ester pendants. TGA analysis indicated that all the thioester‐containing polymers exhibited moderate thermal stability, and the sulfur‐containing polymers show slightly lower thermal stability than their counterparts without sulfur. The new family of functionalized polyethylenes could be used as models of ethylene‐thioacrylate copolymers, and find applications as novel functional materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 4027–4036  相似文献   

13.
Partially fluorinated and perfluorinated dioxolane and dioxane derivatives have been prepared to investigate the effect of fluorine substituents on their free‐radical polymerization products. The partially fluorinated monomer 2‐difluoromethylene‐1,3‐dioxolane (I) was readily polymerized with free‐radical initiators azobisisobutyronitrile or tri(n‐butyl)borane–air and yielded a vinyl addition product. However, the hydrocarbon analogue, 2‐methylene‐1,3‐dioxolane (II), produced as much as 50% ring opening product at 60 °C by free‐radical polymerization. 2‐Difluoromethylene‐4‐methyl‐1,3‐dioxolane (III) was synthesized and its free‐radical polymerization yielded ring opening products: 28% at 60 °C, decreasing to 7 and 4% at 0 °C and −78 °C, respectively. All the fluorine‐substituted, perfluoro‐2‐methylene‐4‐methyl‐1,3‐dioxolane (IV) produced only a vinyl addition product with perfluorobenzoylperoxide as an initiator. The six‐membered ring monomer, 2‐methylene‐1,3‐dioxane (V), caused more than 50% ring opening during free‐radical polymerization. However, the partially fluorinated analogue, 2‐difluoromethylene‐1,3‐dioxane (VI), produced only 22% ring opening product with free‐radical polymerization and the perfluorinated compound, perfluoro‐2‐methylene‐1,3‐dioxane (VII), yielded only the vinyl addition polymer. The ring opening reaction and the vinyl addition steps during the free‐radical polymerization of these monomers are competitive reactions. We discuss the reaction mechanism of the ring opening and vinyl addition polymerizations of these partially fluorinated and perfluorinated dioxolane and dioxane derivatives. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5180–5188, 2004  相似文献   

14.
Homopolymers and copolymers containing phenylenevinylenes and naphthylenevinylenes can be synthesized by ring‐opening metathesis polymerization of strained monomers such as tetraoctyloxy‐substituted cyclophanedienes and naphthalenophanedienes initiated by the third‐generation Grubbs’ initiator. The resulting homopolymers exhibited low polydispersities. The block copolymers can also be synthesized by the sequential ring‐opening metathesis polymerization of two individual monomers. The structures of homopolymers and block copolymers were fully characterized by nuclear magnetic resonance spectroscopy. The molecular weight distribution of the block copolymers is relatively broad compared to their parent homopolymers possibly due to chain transfer reaction. The molar ratio of the two blocks can be tailored by the ratio of the monomers employed. The block copolymers exhibited a more efficient energy transfer in the solid state between the different blocks than those carried out in solution. The optical and electrochemical properties of the polymers were investigated and exhibited the potential uses in optoelectronics devices. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 67–74  相似文献   

15.
A series of viologen polymers with bromide, tosylate, and triflimide as counterions were prepared by either the Menshutkin reaction or metathesis reaction in a common organic solvent. Their polyelectrolyte behavior in methanol was determined by solution viscosity measurements, and their chemical structures were determined by Fourier transform infrared and Fourier transform NMR spectroscopy. They were characterized for their thermotropic liquid‐crystalline properties with a number of experimental techniques. Each of the viologen polymers with organic counterions had a low melting transition or fusion temperature above which it formed either a high‐order smectic phase or a low‐order smectic phase. Each of them also exhibited a smectic‐to‐isotropic transition. The ranges of the liquid‐crystalline phase were 80–88 °C for viologen polymers with tosylate as a counterion and 120–146 °C for viologen polymers with triflimide as a counterion. They had excellent thermal stability. The ranges of thermal stability were 288–329 °C for viologen polymers with tosylate as a counterion and 343–350 °C for viologen polymers with triflimide as a counterion. The fluorescence property for all of the viologen polymers in either aqueous or methanol solution was also included in this study. For example, the viologen polymer containing the 4,4′‐bipyridinium and p‐xylyl units along the backbone of the polymer chain with triflimide as a counterion had an absorption spectrum (λmax = 265 nm), an excitation spectrum (λex values = 357, 443, and 454 with monitoring at 533 nm), and an emission spectrum (λem = 536 nm with excitation at 430 and 450 nm) in methanol. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 659–674, 2002; DOI 10.1002/pola.10134  相似文献   

16.
We carried out the polyaddition of dye‐embedded diols with diisocyanates to obtain novel nonlinear optical (NLO) polyurethanes, where the NLO units were embedded in the polymer backbone. The obtained polymers showed high glass‐transition temperatures (138–184 °C) and thermal stability (temperature of 10% weight loss under nitrogen = 227–287 °C). The λ maximum of the polymers was 521–556 nm. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2620–2624, 2001  相似文献   

17.
We reported a new way to synthesize single‐chain white light‐emitting polyfluorene (WPF) with an increased molecular weight using azide‐alkyne click reaction. Four basic polymers with specific end‐capping, which exhibited high‐glass transition temperatures (Tg > 100 °C) and excellent thermal stability, were used as foundations of the WPF's synthesis; a blue‐light polymer (PFB2) end‐capped with azide groups can easily react with acetylene end‐capped polymers (PFB1, PFG1, and PFR1, which are emitting blue‐, green‐ and red‐light, respectively) to form triazole‐ring linkages in polar solvents such as N,N‐dimethylforamide/toluene co‐solvent at moderate temperature of 100 °C, even without metal‐catalyst. Several WPFs that consist of these four basic polymers in certain ratios were derived, and the polymer light‐emitting diode device based on the high‐molecular weight WPF was achieved and demonstrated a maximum brightness of 7551 cd/m2 (at 12.5 V) and a maximum yield of 5.5 cd/A with Commission Internationale de l'Eclairage coordinates of (0.30, 0.33) using fine‐tuned WPF5 as emitting material. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
The incorporation of a silyl‐protected oxanorbornene imide carborane (SONIC) in polyethylene‐like materials is reported. These copolymers were obtained via ring‐opening metathesis copolymerization of (SONIC) and cyclooctene followed by hydrogenation with p‐toluenesulfonylhydrazide. The composition of the copolymer was varied by altering the feed ratio. Structural and thermal properties were investigated and compared with that of a model polymer so as to gauge the impact on the inclusion of the silyl‐functionalized carborane. An initial observation of the modification of the chain sequence upon changing solvent polarity is also discussed. Finally, the potential utilization of these materials as radiation shielding materials is mentioned. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2557–2563, 2010  相似文献   

19.
Fatty acid‐derived cyclooctenes, including n‐hexanoic acid ( M1 ), n‐octanoic acid ( M2 ), lauric acid ( M3 ), and palmitic acid ( M4 ), were prepared as monomers and polymerized by ring‐opening metathesis polymerization (ROMP) using Grubbs second‐generation catalyst ( G2 ). In all the cases, the regio‐irregular unsaturated polymers with pendent linear branches were obtained, which could be saturated by chemical hydrogenation with TSH/TPA in high conversion, yielding ethylene/vinyl ester copolymers with pendent linear branches on precisely every eighth backbone carbon. Both unsaturated and saturated polymers were amorphous, and their structures were characterized by FTIR, 1H and 13C NMR spectra, and elemental analysis. Differential scanning calorimetry (DSC) and thermo‐gravimetric analysis (TGA) were used to study their thermal properties. The chain length of branches greatly affected the thermal properties of polymers. After hydrogenation, the thermal degradation stability of polymers was relatively improved. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2211–2220  相似文献   

20.
A novel series of well‐defined alternating poly[2,7‐(9,9‐dihexylfluorenyl)‐alt‐pyridinyl] (PDHFP) with donor‐acceptor repeat units were synthesized using palladium (0)‐catalyzed Suzuki cross‐coupling reactions in good to high yields. In this series of alternating polymers, 2, 7‐(9,9‐dihexylfluorenyl) was used as the light emitting unit, and the electron deficient pyridinyl unit was employed to provide improved electron transportation. These polymers were characterized by 1H‐NMR and 13C‐NMR, gel permeation chromatography (GPC), thermal analyses, and UV‐vis and fluorescence spectroscopy. The glass transition temperature of copolymers in nitrogen ranged from 110 to 148 °C, and the copolymers showed high thermal stabilities with high decomposition temperatures in the range of 350 to 390 °C in air. The difference in linkage position of pyridinyl unit in the polymer backbone has significant effects on the electronic and optical properties of polymers in solution and in film phases. Meta‐linkage (3,5‐ and 2,6‐linkage) of pyridinyl units in the polymer backbone is more favorable to polymer for pure blue emission and prevention of aggregation of polymer chain than para‐linkage (2,5‐linkage) of the pyridinyl units. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4792–4801, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号