首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we present sufficient global optimality conditions for weakly convex minimization problems using abstract convex analysis theory. By introducing (L,X)-subdifferentials of weakly convex functions using a class of quadratic functions, we first obtain some sufficient conditions for global optimization problems with weakly convex objective functions and weakly convex inequality and equality constraints. Some sufficient optimality conditions for problems with additional box constraints and bivalent constraints are then derived.   相似文献   

2.
In this paper we present necessary conditions for global optimality for polynomial problems with box or bivalent constraints using separable polynomial relaxations. We achieve this by first deriving a numerically checkable characterization of global optimality for separable polynomial problems with box as well as bivalent constraints. Our necessary optimality conditions can be numerically checked by solving semi-definite programming problems. Then, by employing separable polynomial under-estimators, we establish sufficient conditions for global optimality for classes of polynomial optimization problems with box or bivalent constraints. We construct underestimators using the sum of squares convex (SOS-convex) polynomials of real algebraic geometry. An important feature of SOS-convexity that is generally not shared by the standard convexity is that whether a polynomial is SOS-convex or not can be checked by solving a semidefinite programming problem. We illustrate the versatility of our optimality conditions by simple numerical examples.  相似文献   

3.
In this paper some global optimality conditions for general quadratic {0, 1} programming problems with linear equality constraints are discussed and then some global optimality conditions for quadratic assignment problems (QAP) are presented. A local optimization method for (QAP) is derived according to the necessary global optimality conditions. A global optimization method for (QAP) is presented by combining the sufficient global optimality conditions, the local optimization method and some auxiliary functions. Some numerical examples are given to illustrate the efficiency of the given optimization methods.  相似文献   

4.
Sufficient Global Optimality Conditions for Bivalent Quadratic Optimization   总被引:2,自引:0,他引:2  
We prove a sufficient global optimality condition for the problem of minimizing a quadratic function subject to quadratic equality constraints where the variables are allowed to take values –1 and 1. We extend the condition to quadratic problems with matrix variables and orthonormality constraints, and in particular to the quadratic assignment problem.  相似文献   

5.
We present sufficient conditions for the global optimality of bivalent nonconvex quadratic programs involving quadratic inequality constraints as well as equality constraints. By employing the Lagrangian function, we extend the global subdifferential approach, developed recently in Jeyakumar et al. (J. Glob. Optim., 2007, to appear; Math. Program. Ser. A, 2007, to appear) for studying bivalent quadratic programs without quadratic constraints, and derive global optimality conditions. The authors are grateful to the referees for constructive comments and suggestions which have contributed to the final preparation of the paper. Z.Y. Wu’s current address: School of Information Technology and Mathematical Sciences, University of Ballarat, Ballarat, Victoria, Australia. The work of this author was completed while at the Department of Applied Mathematics, University of New South Wales, Sydney, Australia.  相似文献   

6.
In this paper, we first establish some sufficient and some necessary global optimality conditions for quadratic integer programming problems. Then we present a new local optimization method for quadratic integer programming problems according to its necessary global optimality conditions. A new global optimization method is proposed by combining its sufficient global optimality conditions, local optimization method and an auxiliary function. The numerical examples are also presented to show that the proposed optimization methods for quadratic integer programming problems are very efficient and stable.  相似文献   

7.
We establish new necessary and sufficient optimality conditions for global optimization problems. In particular, we establish tractable optimality conditions for the problems of minimizing a weakly convex or concave function subject to standard constraints, such as box constraints, binary constraints, and simplex constraints. We also derive some new necessary and sufficient optimality conditions for quadratic optimization. Our main theoretical tool for establishing these optimality conditions is abstract convexity.  相似文献   

8.
In the present work, we intend to derive conditions characterizing globally optimal solutions of quadratic 0-1 programming problems. By specializing the problem of maximizing a convex quadratic function under linear constraints, we find explicit global optimality conditions for quadratic 0-1 programming problems, including necessary and sufficient conditions and some necessary conditions. We also present some global optimality conditions for the problem of minimization of half-products.  相似文献   

9.
In this paper, we present necessary as well as sufficient conditions for a given feasible point to be a global minimizer of the difference of quadratic and convex functions subject to bounds on the variables. We show that the necessary conditions become necessary and sufficient for global minimizers in the case of a weighted sum of squares minimization problems. We obtain sufficient conditions for global optimality by first constructing quadratic underestimators and then by characterizing global minimizers of the underestimators. We also derive global optimality conditions for the minimization of the difference of quadratic and convex functions over binary constraints. We discuss several numerical examples to illustrate the significance of the optimality conditions. The authors are grateful to the referees for their helpful comments and valuable suggestions which have contributed to the final preparation of the paper.  相似文献   

10.
考虑一类带有双值约束的非凸三次优化问题, 给出了该问题的一个全局最优充分必要条件. 结果改进并推广了一些文献中所给出的全局最优性条件, 同时还通过数值例子来说明所给出的全局最优充要条件是易验证的.  相似文献   

11.
In this paper, we present a necessary and sufficient condition for a zero duality gap between a primal optimization problem and its generalized augmented Lagrangian dual problems. The condition is mainly expressed in the form of the lower semicontinuity of a perturbation function at the origin. For a constrained optimization problem, a general equivalence is established for zero duality gap properties defined by a general nonlinear Lagrangian dual problem and a generalized augmented Lagrangian dual problem, respectively. For a constrained optimization problem with both equality and inequality constraints, we prove that first-order and second-order necessary optimality conditions of the augmented Lagrangian problems with a convex quadratic augmenting function converge to that of the original constrained program. For a mathematical program with only equality constraints, we show that the second-order necessary conditions of general augmented Lagrangian problems with a convex augmenting function converge to that of the original constrained program.This research is supported by the Research Grants Council of Hong Kong (PolyU B-Q359.)  相似文献   

12.
In this paper, a new local optimization method for mixed integer quadratic programming problems with box constraints is presented by using its necessary global optimality conditions. Then a new global optimization method by combining its sufficient global optimality conditions and an auxiliary function is proposed. Some numerical examples are also presented to show that the proposed optimization methods for mixed integer quadratic programming problems with box constraints are very efficient and stable.  相似文献   

13.
In this paper, we first examine how global optimality of non-convex constrained optimization problems is related to Lagrange multiplier conditions. We then establish Lagrange multiplier conditions for global optimality of general quadratic minimization problems with quadratic constraints. We also obtain necessary global optimality conditions, which are different from the Lagrange multiplier conditions for special classes of quadratic optimization problems. These classes include weighted least squares with ellipsoidal constraints, and quadratic minimization with binary constraints. We discuss examples which demonstrate that our optimality conditions can effectively be used for identifying global minimizers of certain multi-extremal non-convex quadratic optimization problems. The work of Z. Y. Wu was carried out while the author was at the Department of Applied Mathematics, University of New South Wales, Sydney, Australia.  相似文献   

14.
In this paper we consider the standard linear SDP problem, and its low rank nonlinear programming reformulation, based on a Gramian representation of a positive semidefinite matrix. For this nonconvex quadratic problem with quadratic equality constraints, we give necessary and sufficient conditions of global optimality expressed in terms of the Lagrangian function.  相似文献   

15.
When the follower's optimality conditions are both necessary and sufficient, the nonlinear bilevel program can be solved as a global optimization problem. The complementary slackness condition is usually the complicating constraint in such problems. We show how this constraint can be replaced by an equivalent system of convex and separable quadratic constraints. In this paper, we propose different methods for finding the global minimum of a concave function subject to quadratic separable constraints. The first method is of the branch and bound type, and is based on rectangular partitions to obtain upper and lower bounds. Convergence of the proposed algorithm is also proved. For computational purposes, different procedures that accelerate the convergence of the proposed algorithm are analysed. The second method is based on piecewise linear approximations of the constraint functions. When the constraints are convex, the problem is reduced to global concave minimization subject to linear constraints. In the case of non-convex constraints, we use zero-one integer variables to linearize the constraints. The number of integer variables depends only on the concave parts of the constraint functions.Parts of the present paper were prepared while the second author was visiting Georgia Tech and the University of Florida.  相似文献   

16.
In this paper, we investigate a constrained optimization problem with a quadratic cost functional and two quadratic equality constraints. While it is obvious that, for a nonempty constraint set, there exists a global minimum cost, a method to determine if a given local solution yields the global minimum cost has not been established. We develop a necessary and sufficient condition that will guarantee that solutions of the optimization problem yield the global minimum cost. This constrained optimization problem occurs naturally in the computation of the phase margin for multivariable control systems. Our results guarantee that numerical routines can be developed that will converge to the global solution for the phase margin.  相似文献   

17.
The Kuhn-Tucker Sufficiency Theorem states that a feasible point that satisfies the Kuhn-Tucker conditions is a global minimizer for a convex programming problem for which a local minimizer is global. In this paper, we present new Kuhn-Tucker sufficiency conditions for possibly multi-extremal nonconvex mathematical programming problems which may have many local minimizers that are not global. We derive the sufficiency conditions by first constructing weighted sum of square underestimators of the objective function and then by characterizing the global optimality of the underestimators. As a consequence, we derive easily verifiable Kuhn-Tucker sufficient conditions for general quadratic programming problems with equality and inequality constraints. Numerical examples are given to illustrate the significance of our criteria for multi-extremal problems.  相似文献   

18.
In this paper, we present Lagrange multiplier necessary conditions for global optimality that apply to non-convex optimization problems beyond quadratic optimization problems subject to a single quadratic constraint. In particular, we show that our optimality conditions apply to problems where the objective function is the difference of quadratic and convex functions over a quadratic constraint, and to certain class of fractional programming problems. Our necessary conditions become necessary and sufficient conditions for global optimality for quadratic minimization subject to quadratic constraint. As an application, we also obtain global optimality conditions for a class of trust-region problems. Our approach makes use of outer-estimators, and the powerful S-lemma which has played key role in control theory and semidefinite optimization. We discuss numerical examples to illustrate the significance of our optimality conditions. The authors are grateful to the referees for their useful comments which have contributed to the final preparation of the paper.  相似文献   

19.
The constrained optimization problem with a quadratic cost functional and two quadratic equality constraints has been studied by Bar-on and Grasse, with positive-definite matrix in the objective. In this note, we shall relax the matrix in the objective to be positive semidefinite. A necessary and sufficient condition to characterize a local optimal solution to be global is established. Also, a perturbation scheme is proposed to solve this generalized problem.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号