首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ultra-thin elastic films of nano-scale thickness with an arbitrary geometry and edge boundary conditions are analyzed. An analytical model is proposed to study the size-dependent mechanical response of the film based on continuum surface elasticity. By using the transfer-matrix method along with an asymptotic expansion technique of small parameter, closed-form solutions for the mechanical field in the film is presented in terms of the displacements on the mid-plane. The asymptotic expansion terminates after a few terms and exact solutions are obtained. The mid-plane displacements are governed by three two-dimensional equations, and the associated edge boundary conditions can be prescribed on average. Solving the two-dimensional boundary value problem yields the three-dimensional response of the film. The solution is exact throughout the interior of the film with the exception of a thin boundary layer having an order of thickness as the film in accordance with the Saint-Venant’s principle.  相似文献   

2.
We derive an optimal scaling law for the energy of thin elastic films under isotropic compression, starting from three-dimensional nonlinear elasticity. As a consequence we show that any deformation with optimal energy scaling must exhibit fine-scale oscillations along the boundary, which coarsen in the interior. This agrees with experimental observations of folds which refine as they approach the boundary. We show that both for three-dimensional elasticity and for the geometrically nonlinear Föppl-von Kármán plate theory the energy of a compressed film scales quadratically in the film thickness. This is intermediate between the linear scaling of membrane theories which describe film stretching, and the cubic scaling of bending theories which describe unstretched plates, and indicates that the regime we are probing is characterized by the interplay of stretching and bending energies. Blistering of compressed thin films has previously been analyzed using the Föppl-von Kármán theory of plates linearized in the in-plane displacements, or with the scalar eikonal functional where in-plane displacements are completely neglected. The predictions of the linearized plate theory agree with our result, but the scalar approximation yields a different scaling.  相似文献   

3.
唐文跃  胡国辉 《力学学报》2012,44(3):600-606
研究了二维周期性电渗驱动液体薄膜的流动特性. 以Debye-Hückel 假设近似下线性化的Poisson-Boltzmann方程描述双电层电动势分布和电荷密度的分布关系, 与黏性不可压缩流体Navier-Stokes方程相耦合, 得到流体在自由面与固壁之间的周期电渗流流场的精确解. 结果显示, 薄膜内速度振幅与流体黏性密切相关, 雷诺数越大, 速度振幅就越小. 该文还细致分析了雷诺数和自由面ζ电势对自由面的流速振幅和薄膜内速度相位差的影响.  相似文献   

4.
The motion of a thin liquid film of viscous incompressible fluid on the horizontal surface in the presence of a magnetizable surfactant on the free boundary in the external inhomogeneous magnetic field is investigated. Surfactant diffusion along the free surface and the dependence of the surface tension on the magnetic field strength are taken into account. The system of evolutionary equations is derived in the lubricant approximation and steady-state film flows and their stability in the case of constant film thickness and constant surfactant number density are investigated with regard to the Marangoni effect.  相似文献   

5.
Liquid film flow due to an unsteady stretching sheet   总被引:1,自引:0,他引:1  
We have studied two-dimensional flow of a thin liquid film over an impulsively stretching sheet under assumption of uniform initial film thickness. Using singular perturbation technique both momentum and film evolution equations are solved analytically for small Reynolds number and these solutions are verified numerically. Numerical computation for large Reynolds number shows an anomalous behaviour of film thinning rate in different time zone. These results are explained physically and the crucial role-played by viscosity in this case is highlighted. It is found that faster rate of thinning can be obtained if the sheet is stretched impulsively with continuously increasing stretching speed.  相似文献   

6.
We use the perturbation method to construct a solution of the plane problem of elasticity for a film-foundation composite where the film surface is weakly curved. In the case where the film surface has a periodic shape, the problem solution in each approximation is represented in terms of Fourier series with coefficients expressed in terms of quadrature. In the first approximation, we obtain the stresses on the film surface and on the interphase surface in terms of the surface curvature, the film average thickness, and the film-to-foundation Young’s modulus ratio.  相似文献   

7.
The flow of a thin film of generalized Newtonian fluid down a vertical wall in the gravity field is considered. For small flow-rates, in the long-wave approximation, an equation describing the evolution of the surface perturbations is obtained. Depending on the signs of the coefficients, this equation is equivalent to one of four equations with solutions significantly different in evolutionary behavior. For the most interesting case, soliton solutions are numerically found.  相似文献   

8.
Asymptotic models are constructed for the solidification process in a highly viscous film flow on the surface of a cone with a given mass supply at the cone apex. In the thin-layer approximation, the problem is reduced to two parabolic equations for the temperatures of the liquid and the solid coupled with an ordinary differential equation for the solidification front. For large Péclet numbers, an analytical steady-state solution for the solidification front is found. A nondimensional parameter which makes it possible to distinguish flows (i) without a solid crust, (ii) with a steady-state solid crust, and (iii) with complete solidification is determined. For finite Péclet numbers and large Stefan numbers, an analytical transient solution is found and the time of complete flow solidification is determined. In the general case, when all the governing parameters are of the order of unity, the original system of equations is studied numerically. The solutions obtained are qualitatively compared with the data of field observations for lava flows produced by extrusive volcanic eruptions.  相似文献   

9.
Waves on the surface of a thin film of a viscous dielectric fluid flowing down the inner surface of one plate of a plane capacitor with alternating voltage applied is considered. It is shown that the volume forces acting from the inhomogeneous electric field are negligibly small in the case of long waves, and the influence of the electric field reduces to the influence of additional pressure onto the film surface. A model equation for determining the deviation of the film thickness from the undisturbed value is derived in the long-wave approximation. Some numerical solutions of this equation are given.  相似文献   

10.
黄春阳  唐山  彭向和 《力学学报》2017,49(4):758-762
当上层超弹性硬质薄膜和下层可膨胀基底构成的双层结构受压时,薄膜的自由表面可通过形成褶皱降低系统能量.研究表明,上下两层的模量比不同时,上层弹性硬质薄膜将表现出不同的表面失稳模式.本文提出了一种新颖的方法可有效抑制双层软材料的表面失稳,即改变基底材料的泊松比,这种方法同时适用于不具有应变硬化的软材料.首先基于Neo-Hookean模型发展了小变形条件下双层结构表面失稳的理论模型,通过半解析的方法得到了表面失稳的临界应变;然后通过有限元计算与模拟,进一步验证了负泊松比基底可延缓表面失稳.结果表明:(1)当双层结构基底泊松比为正且趋于0.5(不可压缩)时,双层结构在较小的压缩应变下出现表面失稳;(2)当基底的泊松比为负且趋于-1时,可被压缩至46%而不出现表面失稳,即可膨胀基底能有效抑制薄膜的表面失稳.本文发展的方法及主要结果可为延展性电子器件的设计提供指导.  相似文献   

11.
Under the assumption that the boundary layer approximation for the original equations is valid, we show the possibility of the existence of progressive waves on the surface of a vertically flowing film when surface tension is neglected. From the system of equations obtained for a thin layer of viscous liquid flowing down an inclined plane, one equation for perturbations of a thin film follows. Steady solutions of this equation allow periodic discontinuous solutions of the roll-wave type.Translated from Zhurnal Prikladnoi Mekhaniki i Teknicheskoi Fiziki, No. 2, pp. 109–113-March–April, 1973.  相似文献   

12.
Atomistic simulations of the evolution of a strained thin film on a substrate has been reported and the formation of dislocations has been observed in the film/substrate interface after the film has buckled. In the framework of the linear elasticity theory, an analytical model has been developed to explain the buckle effect on the formation of the dislocations. A stability diagram with respect to the buckling and dislocation emission phenomena is finally presented for the film as a function of the uniaxial strain and the Burgers vector.  相似文献   

13.
We derive the leading-order equations that govern the dynamics of the flow in a falling, free-standing soap film. Starting with the incompressible Navier?CStokes equations, we carry out an asymptotic analysis using parameters that correspond to a common experimental setup. We account for the effects of inertia, surface elasticity, pressure, viscous stresses, gravity, and air drag. We find that the dynamics of the flow is dominated by the effects of inertia, surface elasticity, gravity, and air drag. We solve the leading-order equations to compute the steady-state profiles of velocity, thickness, and pressure in an experiment in which the film is in the Marangoni elasticity regime. The computational results, which include a Marangoni shock, are in good accord with the experimental measurements.  相似文献   

14.
A two-dimensional elasticity analysis for steady-state axisymmetric dynamic response of an arbitrarily thick elastic homogeneous hollow cylinder of infinite length, which is imperfectly bonded to the surrounding fluid-saturated permeable formation, subject to an axially moving ring load, is presented. The problem solution is derived by using Biot’s dynamic theory of poroelasticity in conjunction with double Fourier transformation with respect to time (frequency) and axial coordinate (axial wave number). The analytical results are illustrated with numerical examples in which a concrete tunnel lining of uniform wall thickness is imperfectly bonded to a surrounding water-saturated poroelastic formation of soft/stiff frame characteristic. Numerical solutions for the radial shell mid-plane and formation displacements are calculated by analytical (numerical) inversion of the Fourier transformation with respect to the frequency (axial wave number). Primary attention is focused on the influence of bonding condition at the liner/soil interface, formation material type, and load velocity on the system’s dynamic response. Limiting cases are considered and good agreements with the solutions available in the literature are obtained.  相似文献   

15.
The effect of the Coriolis force on the evolution of a thin film of Newtonian fluid on a rotating disk is investigated. The thin-film approximation is made in which inertia terms in the Navier–Stokes equation are neglected. This requires that the thickness of the thin film be less than the thickness of the Ekman boundary layer in a rotating fluid of the same kinematic viscosity. A new first-order quasi-linear partial differential equation for the thickness of the thin film, which describes viscous, centrifugal and Coriolis-force effects, is derived. It extends an equation due to Emslie et al. [J. Appl. Phys. 29, 858 (1958)] which was obtained neglecting the Coriolis force. The problem is formulated as a Cauchy initial-value problem. As time increases the surface profile flattens and, if the initial profile is sufficiently negative, it develops a breaking wave. Numerical solutions of the new equation, obtained by integrating along its characteristic curves, are compared with analytical solutions of the equation of Emslie et al. to determine the effect of the Coriolis force on the surface flattening, the wave breaking and the streamlines when inertia terms are neglected.  相似文献   

16.
A modified continuum model of elastic films with nano-scale thickness is proposed by incorporating surface elasticity into the conventional nonlinear Von Karman plate theory. By using Hamilton’s principle, the governing equations and boundary conditions of the ultra-thin film including surface effects are derived within the Kirchhoff’s assumption, where the effects of non-zero normal stress and large deflection are taken into account simultaneously. The present model is then applied to studying the bending, buckling and free vibration of simply supported micro/nano-scale thin films in-plane strains and explicit exact solutions can be obtained for these three cases. The size-dependent mechanical behavior of the thin film due to surface effects is well elucidated in the obtained solutions.  相似文献   

17.
The impact dynamics of water drops on thin films of viscoelastic wormlike micelle solutions is experimentally studied using a high-speed digital video camera at frame rates up to 4000 frame/s. The composition and thickness of the thin film is modified to investigate the effect of fluid rheology on the evolution of crown growth, the formation of satellite droplets and the formation of the Worthington jet. The experiments are performed using a series of wormlike micelle solutions composed of a surfactant, cetyltrimethylammonium bromide (CTAB), and a salt, sodium salicylate (NaSal), in deionized water. The linear viscoelastic shear rheology of the wormlike micelle solutions is well described by a Maxwell model with a single relaxation time while the steady shear rheology is found to shear thin quite heavily. In transient homogeneous uniaxial extension, the wormlike micelle solutions demonstrate significant strain hardening. The size and velocity of the impacting drop is varied to study the relative importance of Weber, Ohnesorge, and Deborah numbers on the impact dynamics. The addition of elasticity to the thin film fluid is found to suppress the crown growth and the formation of satellite drops with the largest effects observed at small film thicknesses. A new form of the splashing threshold is postulated which accounts for the effects of viscoelasticity and collapses the satellite droplet data onto a single master curve dependent only on dimensionless film thickness and the underlying surface roughness. Additionally, a plateau is observed in the growth of the maximum height of the Worthington jet height with increasing impact velocity. It is postulated that the complex behavior of the Worthington jet growth is the result of a dissipative mechanism stemming from the scission of wormlike micelles.  相似文献   

18.
Buckling of stiff thin films on compliant substrates has many important applications ranging from stretchable electronics to precision metrology and sensors. Mechanics plays an indispensable role in the fundamental understanding of such systems. Some existing mechanics models assume plane-strain deformation, which do not agree with experimental observations for narrow thin films. Systematic experimental and analytical studies are presented in this paper for finite-width stiff thin films buckling on compliant substrates. Both experiments and analytical solution show that the buckling amplitude and wavelength increase with the film width. The analytical solution agrees very well with experiments and therefore provides valuable guide to the precise design and control of the buckling profile in many applications. The effect of film spacing is studied via the analytical solutions for two thin films and for periodic thin films.  相似文献   

19.
The wrinkling of a stiff thin film bonded on a soft elastic layer and subjected to an applied or residual compressive stress is investigated in the present paper. A three-dimensional theoretical model is presented to predict the buckling and postbuckling behavior of the film. We obtained the analytical solutions for the critical buckling condition and the postbuckling morphology of the film. The effects of the thicknesses and elastic properties of the film and the soft layer on the characteristic wrinkling wavelength are examined. It is found that the critical wrinkling condition of the thin film is sensitive to the compressibility and thickness of the soft layer, and its wrinkling amplitude depends on the magnitude of the applied or residual in-plane stress. The bonding condition between the soft layer and the rigid substrate has a considerable influence on the buckling of the thin film, and the relative sliding at the interface tends to destabilize the system.  相似文献   

20.
We give a complete analysis of solutions of a model for the flow of a multispecies reacting fluid occupying a thin cylinder whose walls may be semipermeable with respect to some or all of the chemical species. We prove the global existence of solutions and establish a number of time-independent a priori bounds sufficient to determine the corresponding time-asymptotic steady-state. We then derive necessary conditions and sufficient conditions ensuring that this steady-state reflects complete combustion, that is, that at least one of the reactant species is depleted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号