首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liao WS  Lin CH  Chen CY  Kuo CM  Liu YC  Wu JC  Lin CE 《Electrophoresis》2007,28(21):3922-3929
Enantioseparations of five chiral phenothiazines in CD-modified CZE using the single isomer sulfate-substituted beta-CD (heptakis(2,3-dihydroxy-6-O-sulfo)-beta-CD, SI-S-beta-CD) and dual CD systems consisting of SI-S-beta-CD and a neutral CD as chiral selectors in a citrate buffer at pH 3.0 were investigated. The results indicate that SI-S-beta-CD is an excellent chiral selector for enantioseparation of promethazine. The enantiomers of trimeprazine were well separated, while those of ethopropazine could also be baseline-resolved with SI-S-beta-CD. With dual CD systems, especially with hydroxypropyl-beta-CD (HP-beta-CD) as neutral CD, the enantioselectivity of thioridazine and ethopropazine was considerably enhanced. Effective enantioseparation of phenothiazines, except for methotrimeprazine, could thus be favorably and simultaneously achieved. Moreover, reversal of the enantiomer migration order of ethopropazine and thioridazine occurred by varying the concentration of gamma-CD in the presence of SI-S-beta-CD. These phenomena may be attributable to the opposite effects of sulfated beta-CD and gamma-CD on the mobility of the enantiomers of ethopropazine and of thioridazine. Comparative studies on the enantioseparations of phenothiazines with single CD and dual CD systems containing SI-S-beta-CD and randomly sulfate-substituted beta-CD (MI-S-beta-CD) were made.  相似文献   

2.
The separation and selectivity of nine benzophenones in micellar electrokinetic chromatography (MEKC) using sodium dodecyl sulfate (SDS) micelles or sodium cholate (SC) modified mixed micelles were investigated in the pH range 6.5-8.0. The results indicate that the combined effects of buffer pH and SC concentration can greatly affect the separation and selectivity of benzophenones, particularly for benzophenones possessing a hydroxyl substituent at the 4-position of the aromatic ring with respect to the carbonyl moiety when using SDS-SC mixed micelles. Better separability can be obtained with SDS-SC mixed micelles than with SDS micelles. Complete separation of nine benzophenones in MEKC can be achieved with an appropriate choice of buffer pH and the concentration of SDS micelles or SC modified mixed micelles. The dependence of the migration order of those benzophenones based on their structures and solute-micelle interactions is discussed.  相似文献   

3.
In this study both native and chemically modified cyclodextrins (CDs) were investigated as buffer additives to improve the micellar electrokinetic capillary chromatography (MEKC) separation of endogenous bioanalytes in human urine. The following CDs were investigated: alpha, beta, gamma-CDs; hydroxypropyl-alpha-CD, hydroxypropyl-beta-CD, methylated beta-CD, sulphated beta-CD, sulphobutyl ether-beta-CD and hydroxypropyl-gamma-CD. The separations were compared to MEKC without additives. The best improvement in peak resolution and separation of urine components was observed with the sulphated beta-CD. A four-factor three-level full factorial design study was conducted on voltage, temperature, pH and sulphated beta-CD molarity. The optimum conditions were 25 mM sodium tetraborate, pH 9.5, 75 mM sodium dodecyl sulphate (SDS) and 6.25 mM sulphated beta-CD and were able to resolve 70 peaks from a urine pool in 12 min. These optimum conditions have been successfully applied to a number of clinical samples.  相似文献   

4.
The influences of buffer pH and the concentration of beta-cyclodextrins (beta-CDs) on the separation and migration behavior of 13 structurally related phenothiazines in CD-modified capillary zone electrophoresis (CD-CZE) using a phosphate background electrolyte at low pH were investigated. We focused on the separation of these phenothiazines, including the enantiomers of chiral analytes, with the use of beta-CD and hydroxypropyl-beta-CD (HP-beta-CD) as electrolyte modifiers or chiral selectors at concentrations less than 8 mM. The results indicate that the interactions of phenothiazines with beta-CDs are very strong and that effective separations of 13 analytes can be achieved with addition of 0.3 mM beta-CD or 0.5 mM HP-beta-CD in a phosphate buffer at pH 3.0. Binding constants of phenothiazines to beta-CDs were evaluated for a better understanding of the interactions of phenothiazines with beta-CDs.  相似文献   

5.
Chiral separation of 20 pairs of amino acids derivatized with fluoresceine-5-isothiocyanate (FITC) by capillary electrophoresis and laser-induced fluorescence detection was studied using the mixture of beta-cyclodextrin (beta-CD) and sodium taurocholate (STC) as selector. Resolution was considerably superior to that obtained by using either beta-CD or STC alone. The molar ratio of beta-CD to STC of about 2:3 was found to be critical to achieve maximum separation. At this beta-CD-to-STC ratio, chiral separation occurred at really low total concentration of beta-CD and STC (<0.1 mM). Other impacting factors were investigated including the total concentration of beta-CD and STC, pH, and capillary conditioning procedure between two successive runs. Using a running buffer of 80 mM borate containing 20 mM beta-CD and 30 mM STC at pH 9.3, all of the 20 pairs of FITC-amino acid enantiomers were baseline resolved. The resolutions of the most pairs of the amino acid enantiomers (17 of 20) were higher than 3.0, only three pairs gave a resolution lower than 3.0 but higher than 1.90 (beta-phenylserine, pSer). The highest resolution reached 14.58 (Glu). Two derivatives of beta-CD, 2-hydroxypropyl-beta-CD (HP-beta-CD) and heptakis(2,6-di-O-methyl)-beta-CD (DM-beta-CD) were also explored. HP-beta-CD showed similar cooperative effect with STC, while DM-beta-CD together with STC led to poorer chiral separation.  相似文献   

6.
A simple and sensitive micellar electrokinetic capillary chromatography (MEKC) method was developed for the separation and determination of six flavonoids in Epimedium brevicornum Maxim. Field-enhanced sample injection with reverse migrating micelles (FESI-RMM) was used for on-line concentration of the flavonoids. An electrolyte containing 20 mM H3PO4, 100 mM SDS, 20% acetonitrile and 2% 2-propanol (pH 2.0) was chosen as the electrophoretic buffer. By optimizing the stacking conditions, about 40-360-fold improvement in the detection sensitivity was obtained for the flavonoids.  相似文献   

7.
In this study, micelles prepared from distearoylphosphatidylethanolamine with covalently attached poly(ethylene) glycol) (PEG) of molecular weight 2000 (DSPE-PEG-2000) were employed in micellar electrokinetic chromatography (MEKC) as pseudostationary phases. Since DSPE-PEG-2000 contains long hydrophobic alkyl chains, an anionic phosphate group, and hydrophilic PEG chains, the prepared micelles are expected to provide a characteristic retention behavior for both neutral and ionic compounds. As a typical example, a baseline separation of phenol and 2-naphthol was successfully achieved by using the DSPE-PEG-2000 micelles as a background electrolyte for MEKC; such success clearly shows that the micelles can retain electrically neutral compounds. The MEKC separations of anionic and cationic compounds with a DSPE-PEG-2000 micellar solution and the enantioseparation of binaphthyl compounds with mixed micelles containing bile salt are also discussed.  相似文献   

8.
The combination of micellar electrokinetic chromatography (MEKC) with mass spectrometry (MS) is very attractive for the direct identification of analyte molecules, for the possibility of selectivity enhancement, and for the structure confirmation and analysis in a MS-MS mode. The direct coupling of MEKC with MS can be hazardous due to the effect of nonvolatile MEKC surfactants on MS performance, including the loss of analyte sensitivity and ion source contamination. The possibility of off-line coupling between MEKC and matrix-assisted laser desorption/ionization (MALDI)-MS remains to be investigated. Various approaches for on-line coupling MEKC with electrospray ionization (ESI)-MS, including the use of high-molecular-mass surfactant, an electrospray-chemical ionization (ES-CI) interface, a voltage switching and buffer renewal system, partial-filling micellar plug and anodically migrating micelles, are reviewed and evaluated. The use of an ES-CI interface is most promising for routine operation of on-line MEKC-MS under the influence of nonvolatile salts and surfactants. The use of a high-molecular-mass surfactants allows the formation of a micellar phase at very low surfactant concentrations and avoids the generation of a high level of background ions in the low m/z region. Alternatively, the application of a partial-filling micellar plug and anodically migrating micelles eliminate the introduction of MEKC micelles into the ESI-MS system. It is possible to directly transfer the conventional MEKC separations to partial-filling MEKC-ESI-MS and MEKC-ESI-MS using anodically migrating micelles without any instrument modifications.  相似文献   

9.
The separation and selectivity of eight aromatic compounds ranging from hydrophilic to hydrophobic properties in micellar electrokinetic chromatography (MEKC) using sodium dodecyl sulfate (SDS) micelles or Tween 20-modified mixed micelles were investigated. The effect of different operation conditions such as SDS and Tween 20 modifier surfactant concentration, buffer pH, and applied voltage was studied. The resolution and selectivity of analytes could be markedly affected by changing the SDS micelle concentration or Tween 20 content in the mixed micelles. Applied voltage and pH of running buffers were used mainly to shorten the separation time. Complete separation of eight analytes could be achieved with an appropriate choice of the concentration of SDS micelles or Tween 20-modified mixed micelles. Quicker elution and better precision could be obtained with SDS-Tween 20 mixed micelles than with SDS micelles. The mechanisms that migration order of those analytes was mainly based on their structures and solute-micelle interactions, including hydrophobic, electrostatic, and hydrogen bonding interactions, were discussed.  相似文献   

10.
Summary Two modes of capillary electrophoresis (CE), capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC), were investigated for the separation of 12 aromatic sulphonate compounds. In CZE, although the voltage applied, the buffer concentration and the pH were optimized for effective separation of the compounds studied, under the best conditions four of the five amino compounds coeluted, as did naphthalene-1-sulphonic acid and naphthalene-2-sulphonic acid. In MEKC, sodium dodecyl sulphate (SDS) and Brij 35 were chosen as the anionic and nonionic surfactants and the effect of the concentration of micelles was examined. The effect of adding methanol as the organic modifier was also investigated with each of these micellar systems. All the analytes, including the isomers, were completely separated by use of MEKC with Brij 35 but when SDS was used only 11 compounds were separated because two amino compounds coeluted.  相似文献   

11.
Gotti R  Fiori J  Mancini F  Cavrini V 《Electrophoresis》2004,25(18-19):3282-3291
Modified micellar electrokinetic chromatography (MEKC) analysis of monomeric flavanols (catechin and epicatechin) and methylxanthines (caffeine and theobromine) in chocolate and cocoa was performed by using sodium dodecyl sulfate (SDS) as a principal component of the running buffer. Because of the reported poor stability of catechins in alkaline solutions, acidic conditions (pH 2.5) were chosen and consequently the electroosmotic flow (EOF) was significantly suppressed; this resulted in a fast anodic migration of the analytes partitioned into the SDS micelles. Under these conditions, variations of either pH value in acidic range or SDS concentration, showed to be not suitable to modulate the selectivity. To overcome this limit, use of additives to the SDS-based running buffer was successfully applied and three different systems were optimized for the separation of (+)-catechin, (-)-epicatechin, caffeine, and theobromine in chocolate and cocoa powder samples. In particular, two mixed micelle systems were applied; the first consisted of a mixture of SDS and 3-[(3-cholamidopropyl)dimethylammonio]-1-propansulfonate (CHAPS) with a composition of 90 mM and 10 mM, respectively; the second was SDS and taurodeoxycholic acid sodium salt (TDC) with a composition of 70 mM and 30 mM, respectively. A further MEKC approach was developed by addition of 10 mM hydroxypropyl-beta-cyclodextrin (HP-beta-CD) to the SDS solution (90 mM); it provided a useful cyclodextrin(CD)-modified MEKC. By applying the optimized conditions, different separation profiles of the flavanols and methylxanthines were obtained showing interesting potential of these combined systems; their integrated application showed to be useful for the identification of the low level of (+)-catechin in certain real samples. The CD-MEKC approach was validated and applied to the determination of catechins and methylxanthines in aqueous extracts from four different commercial chocolate types (black and milk) and two cocoa powders.  相似文献   

12.
The native fluorescence of citalopram (CIT) was obtained in citrate buffer of pH 6.5 with and without beta-cyclodextrin (beta-CD) or sodium dodecyl sulfate (SDS) as fluorescence enhancers at 305 nm using 242 nm for excitation. Micellar systems of ionic and nonionic surfactants were investigated by measuring the fluorescence intensity of the analyte-surfactant system. In slightly acidic aqueous solution of pH 6.5, CIT was better incorporated in CDs and SDS micelles. The luminescence emission from CIT was found to be greatly enhanced by SDS micelles. The fluorescence intensity enhancements in CDs medium and in SDS as ionic surfactant relative to slightly acidic aqueous solution were 125 and 250%, respectively. Organized media-enhanced spectroflourometric methods were developed for the determination of CIT, in pure form as well as in pharmaceutical preparations. The fluorescence intensity-concentration plots were rectilinear over the ranges 0.06 to 0.64, 0.04 to 0.40, and 0.02 to 0.26 microg/mL with lower detection limits of 0.02, 0.01, and 0.007 microg/mL, either in citrate buffer only or in beta-CD and SDS as organized media, respectively. Furthermore, the high sensitivity attained by using SDS as organized medium allowed in vitro spectrofluorometric determination of CIT in spiked human plasma. Interference from endogenous amino acids has been overcome by using the solid-phase extraction technique; the mean recovery (n = 5) was 100.1+/-0.8%  相似文献   

13.
Two different buffer systems for the separation of 12 aromatic hydrophobic sulfonates by micellar electrokinetic chromatography (MEKC) were developed. The following buffer systems were used: aqueous phosphate buffers containing either cetyltrimethylammonium bromide (CTAB) or sodium dodecyl sulfate (SDS). Eleven aromatic sulfonates were simultaneously separated in less than 35 min employing 20 mM phosphate buffer, pH 7.0 containing 50 mM SDS and 10% of acetonitrile.  相似文献   

14.
The analysis and use of fullerenes in capillary electrophoresis (CE) was investigated. Sodium dodecyl sulfate (SDS) was used to solubilize fullerenes C60, C70, and a mixture of C60 and C70 in water. The behavior of the solutions of the C60- and C70-SDS complexes was examined by CE with on-line UV-Vis diode array detection. This study included the use of a C60-SDS complex as a new method of micellar electrokinetic chromatography (MEKC) for the separation of polycyclic aromatic hydrocarbons (PAHs) using CE with uniwavelength detection. Since SDS micelles act as a pseudostationary phase in which the PAH compounds partition with their hydrophobic interior, the addition of C60 within the micelles enhanced separation of the PAHs. The preliminary results using C60-MEKC with SDS were compared to those obtained with MEKC with SDS. The capillary electrophoretic separations were performed in 10 mM borate-phosphate buffer with 100 mM SDS at pH 9.5.  相似文献   

15.
邵景玲 《分析测试学报》2016,35(11):1491-1495
采用准静态扫集胶束电动毛细管色谱(MEKC)法测定了扇贝样品中的2种贝类毒素。毛细管内首先充满含十二烷基硫酸钠(SDS)的缓冲溶液,调节缓冲溶液的pH值,使电渗流等于SDS胶束的电泳流速,电动进样时,带正电荷的贝类毒素离子被SDS扫集吸附,由于SDS在毛细管内处于准静止状态,可使进样时间延长至320 s。与常规电动进样MEKC相比,石房蛤毒素和软骨藻酸的检测灵敏度分别提高950和810倍。该方法对石房蛤毒素和软骨藻酸的检出限分别为0.05,0.12 ng/m L。方法可实现对扇贝样品中2种贝类毒素的快速、灵敏检测。  相似文献   

16.
A cyclodextrin-modified micellar capillary electrophoretic method (MECC) was developed using mixtures of beta, cyclodextrins (beta-CD) and mono-3-O-phenylcarbamoyl-beta-CD as chiral additives for the chiral separation of miconazole with the dual CDs systems. The enantiomers were resolved using a running buffer of 50 mmol/L borate pH 9.5 containing 15 mmol/L beta-CD and 15 mmol/L mono-3-O-phenylcarbamoyl-beta-CD containing 50 mmol/L sodium dodecyl sulfate and 1 mol/L urea. A study of the respective influence of the beta-CD and the mono-3-O-phenylcarbamoyl-beta-CD concentration was performed to determine the optimal conditions with respect to the resolution. Good repeatability of the method was obtained.  相似文献   

17.
A novel method of modifying sodium undecanoyl-L-leucinate (SUL) micelles employed in chiral separation of analytes in micellar electrokinetic chromatography (MEKC) to enhance selectivity toward specific analytes is discussed. The current study aimed at modifying the SUL micelles by introducing different alcohols into the mono-SUL micelles. The micellar solutions were then polymerized in the presence of alcohols followed by postpolymerization extraction of the alcohols to yield alcohol-free polymeric surfactants (poly-L-SUL). The effects of hexanol (C(6)OH) and undecylenyl alcohol (C(11)OH) on micellar properties of this surfactant were investigated by use of surface tensiometry, fluorescence spectroscopy, pulsed field gradient-nuclear magnetic resonance (PFG-NMR), and MEKC. The surface tension and PFG-NMR studies indicated an increase in the critical micelle concentration (cmc) and micellar size upon increasing the alcohol concentration. Fluorescence measurements suggested that alcohols induce closely packed micellar structures. Coumarinic and benzoin derivatives, as well as (+/-)-1, 1'-binaphthyl-2,2'-dihydrogen phosphate (BNP) were used as test analytes for MEKC experiments. Examination of MEKC data showed remarkable resolutions and capacity factors of coumarinic derivatives obtained with modified poly-L-SUL as compared to the unmodified poly-L-SUL. Evaluation of fluorescence, PFG-NMR, and MEKC data suggest a strong correlation between the polarity and hydrodynamic radii of alcohol-modified micelles and the resolution of the test analytes.  相似文献   

18.
The electrokinetic separation of the hydrophobic antimycotic drug itraconazole (ITC) and its major metabolite, hydroxyitraconazole (HITC), by a binary aqueous-organic solvent medium containing sodium dodecylsulfate, by microemulsion electrokinetic chromatography (MEEKC) and by micellar electrokinetic chromatography (MEKC) was studied. The results suggest that the first approach is difficult to apply and that there is no substantial difference between separations performed using MEEKC and MEKC modified with n-butanol. The simpler MEKC method is more than adequate and was thus employed for the analysis of ITC and HITC in human serum and plasma. Separation was achieved in plain fused-silica capillaries having a low-pH buffer (pH 2.2) with sodium dodecyl sulfate micelles and reversed polarity. The addition of 2-propanol and n-butanol enhanced analyte solubility and altered the selectivity of the separation by influencing the magnitude of the electrophoretic component in the separation mechanism. Under optimised conditions and using head-column field-amplified sample stacking, an internal standard, ITC and two forms of HITC could be separated in under 9 min, with detection limits less than 0.01 microg/mL. Analysis of samples from patients currently prescribed ITC revealed a different HITC peak area ratio to that of the standards, suggesting a stereoselective component of ITC metabolisation. Comparison of MEKC data with those of a HPLC method employed on a routine basis showed excellent agreement, indicating the potential of this approach for therapeutic drug monitoring of ITC.  相似文献   

19.
A review surveying enantiomer separations by micellar electrokinetic chromatography (MEKC) using chiral surfactants is described. MEKC is one of the most popular techniques in capillary electrophoresis, where neutral compounds can be analyzed as well as charged ones, and the use of chiral micelles enable one to achieve the enantioseparation. The chiral MEKC systems are briefly reviewed according to the types of chiral surfactants along with typical applications. As chiral micelles or pseudostationary phases in MEKC, various natural and synthetic chiral surfactants are used, including several low-molecular-mass surfactants and polymerized surfactants or high-molecular-mass surfactants. Cyclodextrin modified MEKC using chiral micelles is also considered.  相似文献   

20.
Khramov AN  Stenken JA 《The Analyst》1999,124(7):1027-1033
The enhanced microdialysis relative recovery (RR) of some hydrophobic tricyclic drugs (imipramine, desipramine, amitriptyline, carbamazepine and promethazine) is discussed. Enhanced RR was achieved by including a binding agent [beta-cyclodextrin (beta-CD) or 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD)] in the microdialysis perfusion fluid to form inclusion complexes with the drugs, which increases the analyte flux through the membrane material. The maximum effect of the RR increase for all the drugs studied was observed using a commercially available polycarbonate-polyether (PC) membrane. With a 4 mm PC membrane and 4.41 mmol l-1 (0.5% w/v) beta-CD included in the microdialysis perfusion fluid (0.9% saline, pH 7.4) at a flow rate of 0.5 microliter min-1, RR enhancements over controls were as follows: carbamazepine 136, imipramine 268, desipramine 298, amitriptyline 634, and promethazine 987%. Increasing beta-CD [up to 17.63 mmol l-1 (2% w/v)] or HP-beta-CD [up to 32.5 mmol l-1 (5% w/v)] concentration in the microdialysis perfusion fluid enhanced carbamazepine RR three (beta-CD) to four (HP-beta-CD) times compared to controls through PC microdialysis membranes. The PC membrane gave enhanced RR values that were twice those for cuprophan or AN-69 membranes. Enhanced RR with cyclodextrins was successfully applied to sampling from a protein solution containing desipramine in a 4% w/v bovine serum albumin solution. These results suggest that addition of cyclodextrins to microdialysis perfusion fluids may be used to increase microdialysis RR during blood sampling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号