首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Fan SK  Huang PW  Wang TT  Peng YH 《Lab on a chip》2008,8(8):1325-1331
Two important electric forces, dielectrophoresis (DEP) and electrowetting-on-dielectric (EWOD), are demonstrated by dielectric-coated electrodes on a single chip to manipulate objects on different scales, which results in a dielectrophoretic concentrator in an EWOD-actuated droplet. By applying appropriate electric signals with different frequencies on identical electrodes, EWOD and DEP can be selectively generated on the proposed chip. At low frequencies, the applied voltage is consumed mostly in the dielectric layer and causes EWOD to pump liquid droplets on the millimetre scale. However, high frequency signals establish electric fields in the liquid and generate DEP forces to actuate cells or particles on the micrometre scale inside the droplet. For better performance of EWOD and DEP, square and strip electrodes are designed, respectively. Mammalian cells (Neuro-2a) and polystyrene beads are successfully actuated by a 2 MHz signal in a droplet by positive DEP and negative DEP, respectively. Droplet splitting is achieved by EWOD with a 1 kHz signal after moving cells or beads to one side of the droplet. Cell concentration, measured by a cell count chamber before and after experiments, increases 1.6 times from 8.6 x 10(5) cells ml(-1) to 1.4 x 10(6) cells ml(-1) with a single cycle of positive DEP attraction. By comparing the cutoff frequency of the voltage drop in the dielectric layer and the cross-over frequency of Re(fCM) of the suspended particles, we can estimate the frequency-modulated behaviors between EWOD, positive DEP, and negative DEP. A proposed weighted Re(fCM) facilitates analysis of the DEP phenomenon on dielectric-coated electrodes.  相似文献   

2.
A study of EWOD-driven droplets by PIV investigation   总被引:1,自引:0,他引:1  
Despite the recent interest in droplet-based microfluidics using electrowetting-on-dielectric (EWOD), fundamental understanding of the fluid dynamics remains limited to two-dimensional (2D) reduction of the Navier-Stokes equation. Experimental data are in dire need to verify the predictions and advance the field. We report an investigation of the flow inside droplets actuated by EWOD in air using micro particle image velocimetry (micro-PIV). Using the continuity equation, we reconstruct the 3D velocity field from the 2D PIV experimental data. We present some fundamental findings and build valuable insights that will help design sophisticated EWOD microfluidic devices. For example, the results confirm that efficient mixing in a droplet may be achieved by moving the droplet along an irreversible pattern that breaks the symmetry of the two circulating inner flows.  相似文献   

3.
4.
In this paper, we report the preparation of binary clusters of colloidal particles with different sizes or species into complex structures using oil-in-water emulsion droplets as confining geometries. First, polystyrene or silica particles with bimodal size distribution were packed densely by evaporation-induced self-assembly inside oil-in-water emulsion droplets. The configurations of larger particles inside the droplets minimize the second moment of the particle locations for the ratio of large to small particle sizes less than 3. Also, the configurations of bimodal clusters were predicted by using a surface evolver simulation, and the simulation predictions were compared with the experimental results. In addition, heterogeneous colloidal clusters were produced by emulsifying the binary mixture suspension of polystyrene and silica particles in aqueous medium followed by evaporating the oil phase. A density gradient centrifugation was applied to fractionate the asymmetric binary dimers comprised of PS and silica microspheres.  相似文献   

5.
A systematic study of the adsorption of charged nanoparticles at dispersed oil-in-water emulsion interfaces is presented. The interaction potentials for negatively charged hexadecane droplets with anionic polystyrene latex particles or cationic gold particles are calculated using DLVO theory. Calculations demonstrate that increased ionic strength decreases the decay length of the electrostatic repulsion leading to enhanced particle adsorption. For the case of anionic PS latex particles, the energy barrier for particle adsorption is also reduced when the surface charge is neutralized through changes in pH. Complementary small-angle scattering experiments show that the highest particle adsorption for PS latex occurs at moderate ionic strength and low pH. For cationic gold particles, simple DLVO calculations also explain scattering results showing that the highest particle adsorption occurs at neutral pH due to the electrostatic attraction between oppositely charged surfaces. This work demonstrates that surface charges of particles and oil droplets are critical parameters to consider when engineering particle-stabilized emulsions.  相似文献   

6.
Wang Z  Zhe J 《Lab on a chip》2011,11(7):1280-1285
Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.  相似文献   

7.
We have studied polydimethylsiloxane (PDMS)-in-1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]) Pickering emulsions stabilized by polystyrene microparticles with different surface chemistry. Surprisingly, in contrast to the consensus originating from oil/water Pickering emulsions in which the solid particles equilibrate at the oil-water droplet interfaces and provide effective stabilization, here the polystyrene microparticles treated with sulfate, aldehyde sulfate, or carboxylate dissociable groups mostly formed monolayer bridges among the oil droplets rather than residing at the oil-ionic liquid interfaces. The bridge formation inhibited individual droplet-droplet coalescence; however, due to low density and large volume (thus the buoyant effect), the aggregated oil droplets actually promoted oil/ionic liquid phase separation and distressed emulsion stability. Systems with binary heterogeneous polystyrene microparticles exhibited similar, even enhanced (in terms of surface chemistry dependence), bridging phenomenon in the PDMS-in-[BMIM][PF(6)] Pickering emulsions.  相似文献   

8.
We use the "particle lithography" technique to fabricate randomly speckled spheres. Parts of positively charged 3.3 microm polystyrene microspheres were masked off with negatively charged 0.9 microm silica particles, and the remaining portion was covered with negatively charged 60 nm polystyrene nanoparticles. The masking particles were then removed to leave speckles on the larger core particle. Images from electron microscope and confocal microscope show that the diameter of the circular speckles is predictable and reliable, following an estimate from simple geometry, and that the number of speckles formed on a particle can be altered by changing the concentration of silica particle masks. The process described in this paper can be adapted to a wide variety of materials, opening the door for applications where size-controlled patches of one chemistry can appear on core particles of another chemistry and where the precise placement of patches is of little importance.  相似文献   

9.
We consider a theoretical model for a binary mixture of colloidal particles and spherical emulsion droplets. The hard sphere colloids interact via additional short-ranged attraction and long-ranged repulsion. The droplet-colloid interaction is an attractive well at the droplet surface, which induces the Pickering effect. The droplet-droplet interaction is a hard-core interaction. The droplets shrink in time, which models the evaporation of the dispersed (oil) phase, and we use Monte Carlo simulations for the dynamics. In the experiments, polystyrene particles were assembled using toluene droplets as templates. The arrangement of the particles on the surface of the droplets was analyzed with cryogenic field emission scanning electron microscopy. Before evaporation of the oil, the particle distribution on the droplet surface was found to be disordered in experiments, and the simulations reproduce this effect. After complete evaporation, ordered colloidal clusters are formed that are stable against thermal fluctuations. Both in the simulations and with field emission scanning electron microscopy, we find stable packings that range from doublets, triplets, and tetrahedra to complex polyhedra of colloids. The simulated cluster structures and size distribution agree well with the experimental results. We also simulate hierarchical assembly in a mixture of tetrahedral clusters and droplets, and find supercluster structures with morphologies that are more complex than those of clusters of single particles.  相似文献   

10.
Small-angle neutron scattering measurements (SANS) studies have been carried out on binary mixtures of small polystyrene particles (radius 315 Å) and larger perfluorinated particles (radius 664 Å). Both types of particles were spherical, monodisperse and negatively charged in the aqueous conditions used. Electrostatic interactions between the particles in each type of dispersion were examined by determining the structure factor of the dispersions. Good agreement with the experimental data and theory were obtained with the rescaled mean-spherical-approximation-model (RMSA). An alternative approach for predicting the structure factor using an equivalent hard-sphere model also gave good agreement with the experimental data. In the case of binary mixtures, with the FEP particles contrast matched, the radial distribution function indicated extensive ordering of the polystyrene particles. In addition there was evidence, at high number ratios of small particles, of cluster formation of small particles with some rejection of these from the ordered arrangement.  相似文献   

11.
Using a microfluidic flow-focusing device, monodisperse water droplets in oil were generated and their interface populated by either 1 μm or 500 nm amine modified silica particles suspended in the water phase. The deformation and breakup of these Pickering droplets were studied in both pure extensional flow and combined extensional and shear flow at various capillary numbers using a microfluidic hyperbolic contraction. The shear resulted from droplet confinement and increased with droplet size and position along the hyperbolic contraction. Droplet deformation was found to increase with increasing confinement and capillary number. At low confinements and low capillary numbers, the droplet deformation followed the predictions of theory. For fully confined droplets, where the interface was populated by 1 μm silica particles, the droplet deformation increased precipitously and two tails were observed to form at the rear of the droplet. These tails were similar to those seen for surfactant covered droplets. At a critical capillary number, daughter droplets were observed to stream from these tails. Due to the elasticity of the particle-laden interface, these drops did not return to a spherical shape, but were observed to buckle. Although increases in droplet deformation were observed, no tail streaming occurred for the 500 nm silica particle covered droplets over the range of capillary numbers studied.  相似文献   

12.
Image charge detection has been used to measure the charge and velocity of individual electrosprayed water droplets. With a positive bias on the electrospray needle the majority of the droplets are, as expected, positively charged. However, a small fraction, surprisingly, carry a negative charge. Plausible explanations for the presence of the negatively charged droplets are discussed. In particular, we consider the possibility of the negatively charged droplets resulting from a bipolar fission process where the incorporation of a small negatively charged droplet between two larger positively charged progeny lowers the energy barrier for symmetric fission.  相似文献   

13.
In a previous study, it was found that monodisperse polystyrene (PSt) hollow particles can be prepared under special conditions by combining a Shirasu Porous Glass (SPG) emulsification technique and subsequent suspension polymerization process. The dispersed phase mainly containing St, hexadecane (HD), and initiator, was pressed through the uniform pores of a SPG membrane into the continuous phase to form uniform droplets. Then, the droplets were polymerized at 70°C. It was proposed that rapid phase separation between PSt and HD was a main reason responsible for the formation of hollow particle. Rapid phase separation confined the HD inside the droplets, it belonged to a non-equilibrium morphology. In this study, HD/St ratio was increased to a high value to confirm the above proposition by promoting rapid phase separation further between HD and PSt, to prevent monomer diffusion into aqueous phase, and to obtain hollow particle with a large hole.  相似文献   

14.
The behavior of the analyte molecules inside the neutral core of the charged droplet produced by the electrospray (ES) process is not unambiguously known to date. We have identified interesting molecular transformations of two suitably chosen analytes inside the ES droplets. The highly stable Ni(II) complex of 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane (1) that consists of a positive charge at the metal center, and the allyl pendant armed tertiary amine containing macrocycle 3,4,5:12,13,14-dipyridine-2,6,11,15-tetramethyl-1,7,10,16-tetraallyl-1,4,7,10,13,16-hexaazacyclooctadeca-3,13-diene (M 4p ) have been studied by ESI mass spectrometry as the model analytes. We have shown that these two molecules are not representatively transferred from solution to gas phase by ESI; rather, they undergo fragmentation inside the charged droplets. The results indicated that a charged analyte such as 1 was possibly unstable inside the neutral core of the ES droplet and undergoes fragmentation due to the Coulombic repulsion imparted by the surface protons. Brownian motion of the neutral analyte such as M 4p inside the droplet, on the other hand, may lead to proton attachment on interaction with the charged surface causing destabilization that leads to fragmentation of M 4p and release of resonance stabilized allyl cations from the core of the droplet. Detailed solvent dependence and collision-induced dissociation (CID) studies provided compelling evidences that the fragmentation of the analytes indeed occurs inside the charged ES droplets. A viable model of molecular transformations inside the ES droplet was proposed based on these results to rationalize the behavior of the analyte molecules inside the charged ES droplets.  相似文献   

15.
Micrometer-sized, monodisperse, hollow polystyrene (PS)/poly(ethylene glycol dimethacrylate) (PEGDM) composite particles with a single hole in the shell were prepared by seeded polymerization using (ethylene glycol dimethacrylate/xylene)-swollen PS particles in the presence of sodium dodecyl sulfate (SDS). Single holes were observed at SDS concentrations above 3 mM, much lower than in the PS/polydivinylbenzene (PDVB) system previously reported (above 45 mM). Phase separation inside droplets occurred at lower conversion in the PEGDM system than the PDVB system. Phase separation in the droplet at the early stage of the polymerization is an important factor for the formation of the single hole in the shell. Part CCCXIII of the series “Studies on Suspension and Emulsion.”  相似文献   

16.
Valley JK  Pei SN  Ningpei S  Jamshidi A  Hsu HY  Wu MC 《Lab on a chip》2011,11(7):1292-1297
A platform capable of seamlessly unifying both optoelectrowetting and optoelectronic tweezers is presented. This enables the user to manipulate aqueous droplets (with electrowetting) as well as individual particles within those droplets (with dielectrophoresis). The device requires no photolithography and droplet/particle manipulation can occur continuously over the entire surface of the device. Droplet and 10 μm polystyrene particle speeds of up to 8 mm s(-1) and 60 μm s(-1), respectively, are demonstrated. Particle concentration within, and subsequent splitting of, a droplet is performed resulting in average concentration efficiencies of 93%. Serial concentration is also demonstrated resulting in exponentially increasing particle concentrations and a 10× concentration increase. Finally, the platform is used to select a single cell out of a cohort and subsequently encapsulate it in its own aqueous droplet.  相似文献   

17.
We describe herein a microfluidic system for active and precise control of droplet division at a bifurcation point in a microchannel. Water-in-oil or oil-in-water droplets, which were initially formed at a T-junction, were introduced into the bifurcation point, and then divided into two daughter droplets. By continuously introducing 'tuning flow' into the downstream of one of the branch channels, and by controlling the flow rates distributed into the two branch channels, the sizes of the daughter droplets could be precisely tuned. The ratio of the volumetric flow rates into the branch channels was estimated by regarding the microchannel network as a resistive circuit. In addition, we performed synthesis of monodispersed polymer particles with controlled sizes utilizing the presented system. The ability to hydrodynamically control the droplet sizes will open new possibilities not only for producing useful emulsions, but also for conducting controlled chemical and biochemical reactions in a confined space.  相似文献   

18.
Organic-inorganic polystyrene (PSt)-silica (SiO2) hybrid asymmetric particles were prepared in one step by a miniemulsion polymerization technique. The organic and inorganic reagents were confined in miniemulsion microreactor droplets. After the formation of PSt and SiO2, internal phase separation inside the droplets was accelerated owing to the hydrophobicity of PSt and the hydrophilicity of SiO2. Therefore, PSt-SiO2 hybrid asymmetric particles could be synthesized in one step. Between each pair of asymmetric particles, silane couplers act as bridges connecting the PSt and SiO2 particles. The size of PSt particles in these asymmetric particles was easily tuned either by changing the weight ratio of St/TEOS or by varying the sonication power during the miniemulsion preparation. After functionalization of the as-prepared asymmetric dimers by surface decoration with Ag particles, enhanced surface-enhanced Raman scattering (SERS) properties were observed due to electromagnetic enhancement of the added Ag colloids.  相似文献   

19.
Herein we offer a simple method to produce non-spherical emulsion droplets stabilized by freshly formed Mg(OH)(2) nanoparticles (MPs). The non-spherical degree of droplets as a function of experiment conditions was investiged and the origins of the presence of non-spherical droplets were discussed. The results of optical microscope images show that stable spherical droplets can be fused into non-spherical at given aging temperature. It is also recognized that particle concentration, oil/water ratio and aging time significantly affect droplet fusion and excess particles that are not adsorbed on the oil/water interface are helpful in restraining droplet fusion. Based on the TEM, XRD and Fluorescence confocal microscopy results, the origins of droplet fusion are inferred from the presence of vacant holes in the particle layer. Because of Oswald ripening, particles on droplet surfaces grow larger than the freshly precipitated ones under a given aging temperature. The growth of particles results in the reduction of total cover area of particle layer and thus creates vacant holes in the particle layer which would cause partial coalescence of droplets once they collide. Thus, these findings can offer a simple alternative to obtain a large amount of non-spherical emulsion droplets but also can help the preparation of non-spherical colloid particles.  相似文献   

20.
Hollow silica microspheres encapsulating ferromagnetic iron oxide nanoparticles were synthesized by a surfactant-aided aerosol process and subsequent treatment. The cationic surfactant cetyltrimethyl ammonium bromide (CTAB) played an essential role in directing the structure of the composite. Translation from mesoporous silica particles to hollow particles was a consequence of increased loading of ferric species in the precursor solution and the competitive partitioning of CTAB between silicate and ferric colloids. The hypothesis was that CTAB preferentially adsorbed onto more positively charged ferric colloids under acidic conditions. At a critical Fe/Si ratio, most of the CTAB was adsorbed onto ferric colloids and coagulated the colloids to form larger clusters. During the aerosol process, a silica shell was first formed due to the preferred silicate condensation on the gas-liquid interface of the aerosol droplet. Subsequent drying concentrated the ferric clusters inside the silica shell and resulted in a silica shell/ferric core particle. Thermal treatment of the core shell particle led to encapsulation of a single iron oxide nanoparticle inside each silica hollow microsphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号