首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper, we study the well-posedness problem on transonic shocks for steady ideal compressible flows through a two-dimensional slowly varying nozzle with an appropriately given pressure at the exit of the nozzle. This is motivated by the following transonic phenomena in a de Laval nozzle. Given an appropriately large receiver pressure P r , if the upstream flow remains supersonic behind the throat of the nozzle, then at a certain place in the diverging part of the nozzle, a shock front intervenes and the flow is compressed and slowed down to subsonic speed, and the position and the strength of the shock front are automatically adjusted so that the end pressure at exit becomes P r , as clearly stated by Courant and Friedrichs [Supersonic flow and shock waves, Interscience Publishers, New York, 1948 (see section 143 and 147)]. The transonic shock front is a free boundary dividing two regions of C 2,α flow in the nozzle. The full Euler system is hyperbolic upstream where the flow is supersonic, and coupled hyperbolic-elliptic in the downstream region Ω+ of the nozzle where the flow is subsonic. Based on Bernoulli’s law, we can reformulate the problem by decomposing the 3 × 3 Euler system into a weakly coupled second order elliptic equation for the density ρ with mixed boundary conditions, a 2 × 2 first order system on u 2 with a value given at a point, and an algebraic equation on (ρ, u 1, u 2) along a streamline. In terms of this reformulation, we can show the uniqueness of such a transonic shock solution if it exists and the shock front goes through a fixed point. Furthermore, we prove that there is no such transonic shock solution for a class of nozzles with some large pressure given at the exit. This research was supported in part by the Zheng Ge Ru Foundation when Yin Huicheng was visiting The Institute of Mathematical Sciences, The Chinese University of Hong Kong. Xin is supported in part by Hong Kong RGC Earmarked Research Grants CUHK-4028/04P, CUHK-4040/06P, and Central Allocation Grant CA05-06.SC01. Yin is supported in part by NNSF of China and Doctoral Program of NEM of China.  相似文献   

2.
Experimental investigations of Laval nozzle flow show for relatively low supply to exit pressure ratios, which correspond to shock wave positions close to the nozzle throat, three different, oscillatory instabilities.
  1. Shock pattern oscillations where the root of a λ-like shock front remains nearly in constant position, but where the proportion between the normal part and the oblique part of the shock changes periodically.
  2. Shock wave and separation bubble oscillations where the motion of the shock wave is accompanied by displacements of the separation bubble.
  3. Flow rate oscillations where the shock waves leave periodically through the nozzle throat in upstream direction.
  相似文献   

3.
We establish the existence and stability of subsonic potential flow for the steady Euler–Poisson system in a multidimensional nozzle of a finite length when prescribing the electric potential difference on a non-insulated boundary from a fixed point at the exit, and prescribing the pressure at the exit of the nozzle. The Euler–Poisson system for subsonic potential flow can be reduced to a nonlinear elliptic system of second order. In this paper, we develop a technique to achieve a priori \({C^{1,\alpha}}\) estimates of solutions to a quasi-linear second order elliptic system with mixed boundary conditions in a multidimensional domain enclosed by a Lipschitz continuous boundary. In particular, we discovered a special structure of the Euler–Poisson system which enables us to obtain \({C^{1,\alpha}}\) estimates of the velocity potential and the electric potential functions, and this leads us to establish structural stability of subsonic flows for the Euler–Poisson system under perturbations of various data.  相似文献   

4.
We present a range of numerical tests comparing the dynamical cores of the operationally used numerical weather prediction (NWP) model COSMO and the university code Dune, focusing on their efficiency and accuracy for solving benchmark test cases for NWP. The dynamical core of COSMO is based on a finite difference method whereas the Dune core is based on a Discontinuous Galerkin method. Both dynamical cores are briefly introduced stating possible advantages and pitfalls of the different approaches. Their efficiency and effectiveness is investigated, based on three numerical test cases, which require solving the compressible viscous and non-viscous Euler equations. The test cases include the density current (Straka et al. in Int J Numer Methods Fluids 17:1–22, 1993), the inertia gravity (Skamarock and Klemp in Mon Weather Rev 122:2623–2630, 1994), and the linear hydrostatic mountain waves of (Bonaventura in J Comput Phys 158:186–213, 2000).  相似文献   

5.
6.
7.
We prove the existence of at least one T-periodic solution to a dynamical system of the type $$ - m_i \ddot u_i = \sum\limits_{j = 1,j \ne i}^n {\triangledown V_{ij} (u_i - u_j ,{\text{ }}t)}$$ (1) where the potentials V ij are T-periodic in t and singular at the origin, u i ε R k i=1, ..., n, and k≧3. We also provide estimates on the H 1 norm of this solution. The proofs are based on a variant of the Ljusternik-Schnirelman method. The results here generalize to the n-body problem some results obtained by Bahri & Rabinowitz on the 3-body problem in [6].  相似文献   

8.
We establish the existence of global weak solutions of the two-dimensional incompressible Euler equations for a large class of non-smooth open sets. Loosely, these open sets are the complements (in a simply connected domain) of a finite number of obstacles with positive Sobolev capacity. Existence of weak solutions with L p vorticity is deduced from a property of domain continuity for the Euler equations that relates to the so-called γ-convergence of open sets. Our results complete those obtained for convex domains in Taylor (Progress in Nonlinear Differential Equations and their Applications, Vol. 42, 2000), or for domains with asymptotically small holes (Iftimie et al. in Commun Partial Differ Equ 28(1–2), 349–379, 2003; Lopes Filho in SIAM J Math Anal 39(2), 422–436, 2007).  相似文献   

9.
Following ideas in Maderna and Venturelli (Arch Ration Mech Anal 194:283–313, 2009), we prove that the Busemann function of the parabolic homotetic motion for a minimal central coniguration of the N-body problem is a viscosity solution of the Hamilton–Jacobi equation and that its calibrating curves are asymptotic to the homotetic motion.  相似文献   

10.
Asymptotic expansions for λ ?1 of functions defined by integrals of the form $$I(\lambda ;\theta ) = \mathop \smallint \limits_\Gamma \exp \{ i\lambda \phi (k;\theta )\} g(k;\theta )dk$$ are considered in the case where there are two stationary points of φ which approach ±∞ as the second variable θ approaches some critical value, say θ 0. In this limit the results of the classical methods of stationary phase and steepest descents become invalid. This paper is devoted to the development of an asymptotic expansion of I that remains valid even for θ near and equal to θ 0. The motivating physical problem is the propagation of signals in dispersive media. Indeed, the results of the present paper can be used to study the behavior of that portion of a signal called the “precursor” in a neighborhood of its front of propagation. The technique used to obtain the uniform expansion is an adaptation of the method originally developed by Chester, Friedman and Ursell in their treatment of the problem of two nearby stationary points. Here, however, we find that a certain family of Bessel functions play the role of the Airy functions in that problem. We also obtain the interesting result that our expansion remains valid for λ merely bounded away from zero and θ → θ 0. In fact a theorem is proved which establishes the asymptotic nature of our results in the relevant limits. Finally, two examples are considered to illustrate the use of these results.  相似文献   

11.
We study the dynamics of pattern formation in the one-dimensional partial differential equation $$u_u - (W'(u_x ))_x - u_{xxt} + u = 0{\text{ (}}u = u(x,t),{\text{ }}x \in (0,1),{\text{ }}t > 0)$$ proposed recently by Ball, Holmes, James, Pego & Swart [BHJPS] as a mathematical “cartoon” for the dynamic formation of microstructures observed in various crystalline solids. Here W is a double-well potential like 1/4((u x )2 ?1)2. What makes this equation interesting and unusual is that it possesses as a Lyapunov function a free energy (consisting of kinetic energy plus a nonconvex “elastic” energy, but no interfacial energy contribution) which does not attain a minimum but favours the formation of finer and finer phase mixtures: $$E[u,u_t ] = \int\limits_0^1 {(\frac{{u_t^2 }}{2} + W(u_x ) + \frac{{u^2 }}{2})dx.}$$ Our analysis of the dynamics confirms the following surprising and striking difference between statics and dynamics, conjectured in [BHJPS] on the basis of numerical simulations of Swart & Holmes [SH]:
  • ?While minimizing the above energy predicts infinitely fine patterns (mathematically: weak but not strong convergence of all minimizing sequences (u nvn) of E[u,v] in the Sobolev space W 1 p(0, 1)×L2(0,1)), solutions to the evolution equation of ball et al. typically develop patterns of small but finite length scale (mathematically: strong convergence in W 1 p(0,1)×L2(0,1) of all solutions (u(t),ut(t)) with low initial energy as time t → ∞).
  • Moreover, in order to understand the finer details of why the dynamics fails to mimic the behaviour of minimizing sequences and how solutions select their limiting pattern, we present a detailed analysis of the evolution of a restricted class of initial data — those where the strain field u x has a transition layer structure; our analysis includes proofs that
  • ?at low energy, the number of phases is in fact exactly preserved, that is, there is no nucleation or coarsening
  • ?transition layers lock in and steepen exponentially fast, converging to discontinuous stationary sharp interfaces as time t → ∞
  • ?the limiting patterns — while not minimizing energy globally — are ‘relative minimizers’ in the weak sense of the calculus of variations, that is, minimizers among all patterns which share the same strain interface positions.
  •   相似文献   

    12.
    The main result of this paper is a global lower bound for the fundamental solution Γ of the ultraparabolic differential operator where the a i , j 's and their first derivatives are Hölder continuous functions and 0?p 0?N. The bound will follow from a local estimate of Γ and a Harnack inequality for non-negative solutions of Lu?=?0, by exploiting the invariance of the Harnack inequality with respect to suitable translation and dilation groups. For non-degenerate parabolic operators, our methods and results generalize those of Aronson &; Serrin [1].  相似文献   

    13.
    Dynamic viscoelastic measurements were combined with differential scanning calorimetry (DSC) and atomic force microscopy (AFM) analysis to investigate the rheology, phase structure, and morphology of poly(l-lactide) (PLLA), poly(ε-caprolactone) (PCL), poly(d,l-lactide) (PDLLA) with molar composition l-LA/d-LA?=?53:47, and poly(l-lactide-co-ε-caprolactone) (PLAcoCL) with molar composition l-LA/CL?=?67:33. After melt conformation, both copolymers PDLLA and PLAcoCL were found to be amorphous whereas PLLA and PCL presented partial crystallinity. The copolymers and PCL were considered as thermorheologically simple according to the rheological methods employed. Therefore, data from different temperatures could be overlapped by a simple horizontal shift (a T) on elastic modulus, G′, and loss modulus, G′, versus frequency graph, generating the corresponding master curves. Moreover, these master curves showed a dependency of G″≈ω and G′≈ω 2 at low frequencies, which is a characteristic of homogeneous melts. For the first time, fundamental viscoelastic parameters, such as entanglement modulus G N 0 and reptation time τ d, of a PLAcoCL copolymer were obtained and correlated to chain microstructure. PLLA, by contrast, was unexpectedly revealed as a thermorheologically complex liquid according to the failure observed in the superposition of the phase angle (δ) versus the complex modulus (G*); this result suggests that the narrow window for rheological measurements, chosen to be close to the melting point centered at 180 °C thus avoiding thermal degradation, was not sufficient to assure an homogeneous behavior of PLLA melts. The understanding of the melt rheology related to the chain microstructural aspects will help in the understanding of the complex phase structures present in medical devices.  相似文献   

    14.
    We establish the existence and stability of multidimensional steady transonic flows with transonic shocks through an infinite nozzle of arbitrary cross-sections, including a slowly varying de Laval nozzle. The transonic flow is governed by the inviscid potential flow equation with supersonic upstream flow at the entrance, uniform subsonic downstream flow at the exit at infinity, and the slip boundary condition on the nozzle boundary. Our results indicate that, if the supersonic upstream flow at the entrance is sufficiently close to a uniform flow, there exists a solution that consists of a C 1,α subsonic flow in the unbounded downstream region, converging to a uniform velocity state at infinity, and a C 1,α multidimensional transonic shock separating the subsonic flow from the supersonic upstream flow; the uniform velocity state at the exit at infinity in the downstream direction is uniquely determined by the supersonic upstream flow; and the shock is orthogonal to the nozzle boundary at every point of their intersection. In order to construct such a transonic flow, we reformulate the multidimensional transonic nozzle problem into a free boundary problem for the subsonic phase, in which the equation is elliptic and the free boundary is a transonic shock. The free boundary conditions are determined by the Rankine–Hugoniot conditions along the shock. We further develop a nonlinear iteration approach and employ its advantages to deal with such a free boundary problem in the unbounded domain. We also prove that the transonic flow with a transonic shock is unique and stable with respect to the nozzle boundary and the smooth supersonic upstream flow at the entrance.  相似文献   

    15.
    We study the nonhomogeneous boundary value problem for Navier–Stokes equations of steady motion of a viscous incompressible fluid in a two-dimensional, bounded, multiply connected domain ${\Omega = \Omega_1 \backslash \overline{\Omega}_2, \overline\Omega_2\subset \Omega_1}$ . We prove that this problem has a solution if the flux ${\mathcal{F}}$ of the boundary value through 2 is nonnegative (inflow condition). The proof of the main result uses the Bernoulli law for a weak solution to the Euler equations and the one-sided maximum principle for the total head pressure corresponding to this solution.  相似文献   

    16.
    It is well known that the linear stability of Lagrangian elliptic equilateral triangle homographic solutions in the classical planar three-body problem depends on the mass parameter \({\beta=27(m_1m_2+m_2m_3+m_3m_1)/(m_1+m_2+m_3)^2 \in [0, 9]}\) and the eccentricity \({e \in [0, 1)}\) . We are not aware of any existing analytical method which relates the linear stability of these solutions to the two parameters directly in the full rectangle [0, 9] × [0, 1), aside from perturbation methods for e > 0 small enough, blow-up techniques for e sufficiently close to 1, and numerical studies. In this paper, we introduce a new rigorous analytical method to study the linear stability of these solutions in terms of the two parameters in the full (β, e) range [0, 9] × [0, 1) via the ω-index theory of symplectic paths for ω belonging to the unit circle of the complex plane, and the theory of linear operators. After establishing the ω-index decreasing property of the solutions in β for fixed \({e\in [0, 1)}\) , we prove the existence of three curves located from left to right in the rectangle [0, 9] × [0, 1), among which two are ?1 degeneracy curves and the third one is the right envelope curve of the ω-degeneracy curves, and show that the linear stability pattern of such elliptic Lagrangian solutions changes if and only if the parameter (β, e) passes through each of these three curves. Interesting symmetries of these curves are also observed. The linear stability of the singular case when the eccentricity e approaches 1 is also analyzed in detail.  相似文献   

    17.
    We give a representation for the G-closure of the set of elliptic operators defined by means of the Nemitskii operators , , where the functions a i are strongly monotone and belong to given sets of uniformly Lipschitz functions, but where the characteristic functions satisfy standard volume restrictions.  相似文献   

    18.
    We establish existence, uniqueness and stability of transonic shocks for a steady compressible non-isentropic potential flow system in a multidimensional divergent nozzle with an arbitrary smooth cross-section, for a prescribed exit pressure. The proof is based on solving a free boundary problem for a system of partial differential equations consisting of an elliptic equation and a transport equation. In the process, we obtain unique solvability for a class of transport equations with velocity fields of weak regularity (non-Lipschitz), an infinite dimensional weak implicit mapping theorem which does not require continuous Fréchet differentiability, and regularity theory for a class of elliptic partial differential equations with discontinuous oblique boundary conditions.  相似文献   

    19.
    We derive the quantitative modulus of continuity $$\omega(r)=\left[ p+\ln \left( \frac{r_0}{r}\right)\right]^{-\alpha (n, p)},$$ which we conjecture to be optimal for solutions of the p-degenerate two-phase Stefan problem. Even in the classical case p = 2, this represents a twofold improvement with respect to the early 1980’s state-of-the-art results by Caffarelli– Evans (Arch Rational Mech Anal 81(3):199–220, 1983) and DiBenedetto (Ann Mat Pura Appl 103(4):131–176, 1982), in the sense that we discard one logarithm iteration and obtain an explicit value for the exponent α(n, p).  相似文献   

    20.
    Geometric Continuum Mechanics ( GCM) is a new formulation of Continuum Mechanics ( CM) based on the requirement of Geometric Naturality ( GN). According to GN, in introducing basic notions, governing principles and constitutive relations, the sole geometric entities of space-time to be involved are the metric field and the motion along the trajectory. The additional requirement that the theory should be applicable to bodies of any dimensionality, leads to the formulation of the Geometric Paradigm ( GP) stating that push-pull transformations are the natural comparison tools for material fields. This basic rule implies that rates of material tensors are Lie-derivatives and not derivatives by parallel transport. The impact of the GP on the present state of affairs in CM is decisive in resolving questions still debated in literature and in clarifying theoretical and computational issues. As a consequence, the notion of Material Frame Indifference ( MFI) is corrected to the new Constitutive Frame Invariance ( CFI) and reasons are adduced for the rejection of chain decompositions of finite elasto-plastic strains. Geometrically consistent notions of Rate Elasticity ( RE) and Rate Elasto-Visco-Plasticity ( REVP) are formulated and consistent relevant computational methods are designed.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号