首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A simple but highly sensitive electrochemical sensor for the determination of 8-azaguanine based on graphene-Nafion nanocomposite film-modified glassy carbon electrode (G-Nafion/GCE) was reported. The electrochemical behaviors of 8-azaguanine at G-Nafion/GCE were investigated by cyclic voltammetry (CV), square wave voltammetry (SWV), chronoamperometry (CA), and chronocoulometry (CC). The results showed that the electrochemical sensor exhibited excellent electrocatalytic activity to 8-azaguanine. 8-Azaguanine can be effectively accumulated at G-Nafion/GCE and produce a sensitive anodic peak, due to the synergetic functions of graphene and Nafion. Under the selected conditions, the modified electrode in pH 1.98 Britton-Robinson buffer solution showed a linear voltammetric response to 8-azaguanine within the concentration range of 5.0 × 10?8~3.0 × 10?5 mol L?1, with the detection limit of 1.0 × 10?8 mol L?1. And, the method was also applied to detect 8-azaguanine in spiked human urine with wonderful satisfactory results.  相似文献   

2.
A novel voltammetric sensor, based on single-walled carbon nanotubes (SWNT) dispersed in Nafion and modified glassy carbon electrode (GCE), was fabricated and used to determine the trace amounts of dihydromyricetin (DMY). The electrochemical behavior of DMY at this sensor was investigated in 0.1 mol L−1 sulfuric acid solutions + 0.1 mol L−1 NaCl by cyclic voltammetry and squarewave voltammetry. Compared with bare GCE, the electrode presented an excellent response of DMY through an adsorption-controlled quasi-reversible process. Under the optimum conditions, the response peak currents were linear relationship with the DMY concentrations in the range of 1.0 × 10−7–1.0 × 10−5 mol L−1 with a detection limit of 9 × 10−8 mol L−1. Based on this voltammetric sensor, a simple and sensitive electroanalytical method for DMY was proposed and applied to quantitative determination of DMY in Ampelopsis grossedentata samples. In addition, the oxidation mechanism was proposed and discussed, which could be a reference for the pharmacological action of DMY in clinical study.  相似文献   

3.
Graphene nanosheets were directly electrodeposited onto a glassy carbon electrode (GCE) from the electrolyte solution containing graphene oxide (GO); the resulting electrode (ED-GO/GCE) was characterized with scanning electron microscopy. A simple and rapid electrochemical method was developed for the determination of theophylline (TP), based on the excellent properties of ED-GO film. The result indicated that ED-GO film-modified GCE exhibited efficient electrocatalytic oxidation for TP with relatively high sensitivity and stability. The electrochemical behavior of TP at ED-GO/GCE was investigated in detail. Under the optimized conditions, the oxidation peak current was proportional to the TP concentration in the range of 8.0?×?10?7 to 6.0?×?10?5 mol?L?1 with the detection limit of 1.0?×?10?7 mol?L?1 (S/N?=?3). The proposed method was successfully applied to green tea samples with satisfactory results.  相似文献   

4.
Several problems for the direct electrochemical oxidation of reduced glutathione (GSH) challenge the usage of electroanalytical techniques for its determination. In this work, the electrochemical oxidation of GSH catalyzed by gold nanoparticles electrodeposited on Nafion modified carbon paste electrode in 0.04?mol?L?1 universal buffer solution (pH?7.4) is proved successful. The effect of various experimental parameters including pH, scan rate and stability on the voltammetric response of GSH was investigated. At the optimum conditions, the concentration of GSH was determined using differential pulse voltammetry (DPV) in two concentration ranges: 0.1?×?10?7 to 1.6?×?10?5?mol?L?1 and 2.0?×?10?5 to 2.0?×?10?4?mol?L?1 with correlation coefficients 0.9988, 0.9949 and the limit of detections (LOD) are 3.9?×?10?9?mol?L?1 and 8.2?×?10?8?mol?L?1, respectively, which confirmed the sensitivity of the electrode. The high sensitivity, wide linear range, good stability and reproducibility, and the minimal surface fouling make this modified electrode useful for the determination of spiked GSH in urine samples and in tablet with excellent recovery results obtained.  相似文献   

5.
Glucose oxidase(GOD) was encapsulated in the Graphene/Nafion film modified glassy carbon electrode(GCE) and used as an ECL sensor for glucose. The GOD retains its bioactivity after being immobilized into the composite film. The sensor gives a linear response for glucose in the range of 2.0×10?6–1.0×10?4 mol/L with a detection limit of 1.0×10?6 mol/L. The sensor showed good stability, the RSD for continuous scanning for 5.0×10?5 mol/L glucose was 4.21 % (n=5). After being stored in 0.05 mol/L pH 7.4 PBS in 4 °C for two weeks, the modified electrode maintains 80 % of its initial activity. The glucose sensor provides new opportunity for clinical diagnosis applications.  相似文献   

6.
A new voltammetric procedure for the simultaneous determination of dopamine (DA) and paracetamol (PA) using boron doped diamond electrode modified with Nafion and lead films (PbF/Nafion/BDDE) was investigated. The use of this electrode resolved the overlapped voltammetric waves of DA and PA into well‐defined peaks with peak to peak separation of about 320 mV. Under the optimized experimental conditions in differential pulse voltammetric technique, DA and PA gave a linear response over the ranges 2.0×10?7–1.0×10?4 mol L?1*(R2=0.9996) and 5.0×10?7–1.0×10?3 mol L?1 (R2=0.9979), respectively. The detection limits were found to be 5.4×10?8 mol L?1 for DA and 1.4×10?7 mol L?1 for PA. They are lower, comparable or in some cases a little bit higher than those obtained using other electrochemical sensors. However, the proposed procedure of the sensor preparation is much simpler than procedures described in the literature with a lower detection limit. The proposed procedure was successfully applied to the determination of PA in some commercial pharmaceuticals as well as to the simultaneous determination of DA and PA in human urine, whole blood and serum samples directly without any separation steps.  相似文献   

7.
《Analytical letters》2012,45(7):1321-1332
Abstract

A novel amperometric nitric oxide (NO) sensor based on a glassy carbon electrode modified with thionine and Nafion films has been developed. The oxidation peak current of NO increased significantly at the poly(thionine)/Nafion‐modified glassy carbon electrode (GCE), which can be used for the detection of NO. The oxidation peak current was linear with the concentration of nitric oxide over the range from 3.6×10?7 to 6.8×10?5 mol · L?1, and the detection limit was 7.2×10?8 mol · L?1. This nitric oxide sensor showed high selectivity to nitric oxide determination, and some potential interference could be eliminated effectively. The nitric oxide sensor has been applied to monitor NO release from rat kidney stimulated by L‐arginine. The results indicated the applicability of the NO sensor to biomedical samples.  相似文献   

8.
A new sensitive electrochemical sensor was fabricated based on a layer by layer process. In this process the glassy carbon electrode (GCE) is first coated by a thin film of multiwalled carbon nanotubes (MWCNTs). In the next step, the electropolymerization of pyrrole in the presence of Nitrazine Yellow (NY) as a dopant anion is performed on the surface of the MWCNTs precoated electrode. The electrochemical response characteristics of the modified electrode toward naltrexone (NTX) were studied by means of linear sweep voltammetry (LSV). A remarkable increase (~19 times) was observed in the anodic peak current of NTX on the surface of the modified electrode relative to the bare GCE. The effects of experimental parameters on the electrode response such as, drop size of the cast MWCNTs suspension, pH of the supporting electrolyte, accumulation conditions and the number of cycles in the electropolymerization process were investigated. Under the optimum conditions, the modified electrode showed a wide linear response to the concentration of NTX in the range of 4.0×10?8–1×10?5 mol L?1 with a detection limit of 12 nmol L?1. The prepared sensor exhibited high sensitivity, stability and good reproducibility for the determination of NTX. This sensor was successfully applied for the accurate determination of trace amounts of NTX in pharmaceutical and clinical preparations.  相似文献   

9.
Electrochemical behavior of dopamine (DA) was investigated at the gold nanoparticles self‐assembled glassy carbon electrode (GNP/LC/GCE), which was fabricated by self‐assembling gold nanoparticles on the surface of L ‐cysteine (LC) modified glassy carbon electrode (GCE) via successive cyclic voltammetry (CV). A pair of well‐defined redox peaks of DA on the GNP/LC/GCE was obtained at Epa=0.197 V and Epc=0.146 V, respectively. And the peak separation between DA and AA is about 0.2 V, which is enough for simultaneous determination of DA and AA. The peak currents of DA and AA were proportional with their concentrations in the range of 6.0×10?8–8.5×10?5 mol L?1 and 1.0×10?6–2.5×10?3 mol L?1, with the detection limit of 2.0×10?8 mol L?1 and 3.0×10?7 mol L?1 (S/N=3), respectively. The modified electrode exhibits an excellent reproducibility, sensibility and stability for simultaneous determination of DA and AA in human serum with satisfactory result.  相似文献   

10.
An electrochemical biosensor was fabricated by covalent modification of 5-hydroxytryptophan (5-HTP) on the surface of glassy carbon electrode (GCE). The electrode, denoted as 5-HTP/GCE, was characterized by X-ray photoelectron spectroscopy, cyclic voltammetry and differential pulse voltammetry. For comparison, tryptophan modified GCE (TRP/GCE) and serotonin modified GCE (5-HT/GCE) were prepared by the same method. It was found that electrocatalytic ability of these electrodes was in the order of 5-HTP/GCE?>?TRP/GCE?>?5-HT/GCE for the oxidation of dopamine (DA) and 5-HT. The sensor was effective to simultaneously determine DA and 5-HT in a mixture. It can resolve the overlapping anodic peaks into two well-defined voltammetric peaks at 0.24 and 0.39 V (versus SCE). The linear response is in the range of 5.0?×?10?7–3.5?×?10?5 mol L?1 with a detection limit of 3.1?×?10?7 mol L?1 for DA, and in the range of 5.0?×?10?6–3.5?×?10?5 mol L?1 with a detection limit of 1.7?×?10?6 mol L?1 for 5-HT (s/n?=?3), respectively.  相似文献   

11.
We report a simple and sensitive voltammetric sensor for the determination of chlorpromazine (CPZ) based on Ni?Al layered double hydroxide (NiAlLDH) modified glassy carbon electrode (GCE). NiAlLDH was simply electrodeposited on GCE surface in a very short time. The response linear range was 1×10?3–1×10?9 mol L?1, with a detection limit of 1×10?9 mol L?1. The NiAlLDH film showed well defined and well separate peaks for dopamine, ascorbic acid, uric acid and CPZ in the same solution. The proposed electrode was used to measure the active pharmaceutical ingredient of CPZ tablet as a real sample.  相似文献   

12.
A novel amperometric sensor and chromatographic detector for determination of parathion has been fabricated from a multi-wall carbon nano-tube (MWCNT)/Nafion film-modified glassy-carbon electrode (GCE). The electrochemical response to parathion at the MWCNT/Nafion film electrode was investigated by cyclic voltammetry and linear sweep voltammetry. The redox current of parathion at the MWCNT/Nafion film electrode was significantly higher than that at the bare GCE, the MWCNT-modified GCE, and the Nafion-modified GCE. The results indicated that the MWCNT/Nafion film had an efficient electrocatalytic effect on the electrochemical response to parathion. The peak current was proportional to the concentration of parathion in the range 5.0×10–9–2.0×10–5 mol L–1. The detection limit was 1.0×10–9 mol L–1 (after 120 s accumulation). In high-performance liquid chromatography with electrochemical detection (HPLC–ED) a stable and sensitive current response was obtained for parathion at the MWCNT/Nafion film electrode. The linear range for parathion was over four orders of magnitude and the detection limit was 6.0×10–9 mol L–1. Application of the method for determination of parathion in rice was satisfactory.  相似文献   

13.
The paper describes the first electrochemical method (differential pulse adsorptive stripping voltammetry, DPAdSV) using a screen‐printed sensor with a carbon/carbon nanofibers working electrode (SPCE/CNFs) for the direct determination of low (real) concentrations of paracetamol (PA) in environmental water samples. By applying this sensor together with DPAdSV, two linear PA concentration ranges from 2.0×10?9 to 5.0×10?8 mol L?1 (r=0.9991) and 1.0×10?7–2.0×10?6 mol L?1 ( r=0.9994) were obtained. For the accumulation time of 90 s, the limit of detection was 5.4×10?10 mol L?1. Moreover, the SPCE/CNFs sensor and the DPADSV procedure for PA determination are potentially applicable in field analysis. The process of PA adsorption at the SPCE/CNFs surface was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and theoretical studies. In the theoretical study of the interaction of CNF and PA, the first species was modelled by graphene‐like clusters containing up to 37 rings. It was found that the preferable orientation of PA is parallel to the carbon surface with the binding energy of about ?68 kJ/mol calculated by symmetry‐adapted perturbation theory (SAPT). Both the selectivity and the accuracy of the developed sensor for real sample analysis were also investigated using Polish river and sea samples.  相似文献   

14.
Herein, a poly(L-tryptophan) modified glassy carbon electrode (Ptry/GCE) for the determination of maltol is fabricated by electrochemical polymerisation. The electrochemical behaviour of maltol at the Ptry/GCE is studied by cyclic voltammetry (CV). The modified electrode shows excellent electrocatalytic activity towards the oxidation of maltol and the oxidation is a one-proton-one-electron process. In pH 8.0 phosphate buffer solution (PBS), the oxidation peak current of maltol shows a linear relationship with its concentration in the range from 9.00 × 10?5 to 3.75 × 10?3 mol L?1 with a correlation coefficient of 0.9972. The limit of detection is estimated to be 8.00 × 10?6 mol L?1. The novel method shows good selectivity, recovery, reproducibility and great convenience and has been satisfactorily demonstrated in real food sample analysis.  相似文献   

15.
The electrochemical response of a modified-carbon nanotubes paste electrode with p-aminophenol was investigated as an electrochemical sensor for sulfite determination. The electrochemical behaviour of sulfite was studied at the surface of the modified electrode in aqueous media using cyclic voltammetry and square wave voltammetry. It has been found that under the optimum condition (pH 7.0) in cyclic voltammetry, the oxidation of sulfite occurs at a potential about 680?mV less positive than that of an unmodified-carbon nanotubes paste electrode. Under the optimized conditions, the electrocatalytic peak current showed linear relationship with sulfite concentration in the range of 2.0?×?10?7–2.8?×?10?4?mol?L?1 with a detection limit of 9.0?×?10?8?mol?L?1 sulfite. The relative standard deviations for ten successive assays of 1.0 and 50.0?µmol?L?1 sulfite were 2.5% and 2.1%, respectively. Finally, the modified electrode was examined as a selective, simple and precise new electrochemical sensor for the determination of sulfite in water and wastewater samples.  相似文献   

16.
A modified glassy carbon electrode was prepared as an electrochemical voltammetric sensor based on molecularly imprinted polymer film for tartrazine (TT) detection. The sensitive film was prepared by copolymerization of tartrazine and acrylamide on the carbon nanotube-modified glassy carbon electrode. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. Under the optimum conditions, two dynamic linear ranges of 8?×?10?8 to 1?×?10?6?mol?L?1 and 1?×?10?6 to 1?×?10?5?mol?L?1 were obtained, with a detection limit of 2.74?×?10?8?mol?L?1(S/N?=?3). This sensor was used successfully for tartrazine determination in beverages.  相似文献   

17.
A sensitive electrochemical method was developed for the determination of bisphenol A (BPA) at a glassy carbon electrode (GCE) modified with a multiwalled carbon nanotubes (MWCNTs)‐gold nanoparticles (GNPs) hybrid film, which was prepared based on the electrostatic interaction between positively charged cetyltrimethylammonium bromide (CTAB) and negatively charged MWCNTs and GNPs. The MWCNT‐GNPs/GCE exhibited an enhanced electroactivity for BPA oxidation versus unmodified GCE and MWCNTs/GCE. The experimental parameters, including the amounts of modified MWCNTs and GNPs, the pH of the supporting electrolyte, scan rate and accumulation time, were examined and optimized. Under the optimal conditions, the differential pulse voltammetric anodic peak current of BPA was linear with the BPA concentration from 2.0×10?8 to 2×10?5 mol L?1, with a limit of detection of 7.5 nmol L?1. The proposed procedure was applied to determine BPA leached from real plastic samples with satisfactory results.  相似文献   

18.
A new electrochemical sensor was developed for determination of D-penicillamine using glassy carbon electrode which had been modified by gold nanoparticles–reduced graphene oxide nanocomposite (AuNPs/RGO/GCE) in aqueous solution. Cyclic voltammetry, transmission electron microscopy and electrochemical impedance spectroscopy were used for characterization of the modified electrode. The results indicated that the kinetic of oxidation reaction of D-penicillamine at the surface of the electrode was controlled by both diffusion and adsorption processes. In 0.1 mol L?1 phosphate buffer (pH 2.0), the oxidation current increased linearly with concentration of D-penicillamine with a linear range of 5.0 × 10?6 to 1.1 × 10?4 mol L?1 and regression coefficient of R 2 = 0.9972. Theoretical detection limit, defined based on 3σ of the blank signal (n = 9) divided by the slope of the linear regression equation, was 3.9 × 10?6 mol L?1 D-penicillamine using differential pulse voltammetry. The developed method was successfully applied to the determination of D-penicillamine in pharmaceutical formulation and blood serum samples.  相似文献   

19.
Salicylic acid is a phytohormone, playing crucial roles in signal transduction, crop growth, and development, and defense to environmental challenges. In this study, a highly selective electrochemical sensor was designed and used to determine salicylic acid using molecularly imprinted polymers for recognition. The electrochemical sensor was fabricated via stepwise modification of gold nanoparticle–graphene–chitosan and molecularly imprinted polymers on a glassy carbon electrode. With electrochemical deposition, a gold nanoparticle–graphene–chitosan film was deposited on the glassy carbon electrode and enhanced the sensitivity. Molecularly imprinted polymers with adsorbed template salicylic acid were added to the surface of the modified electrode. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the modified electrodes. Salicylic acid in wheat was quantified by the sensor using the molecularly imprinted polymer/gold nanoparticle–graphene–chitosan/glassy carbon electrode. Concentrations of salicylic acid from 5?×?10?10 to 5?×?10?5?mol?L?1 were determined showing that the developed sensor was suitable for the analysis of food.  相似文献   

20.
ABSTRACT

A simple, highly sensitive voltammetric method for the determination of urapidil at poly(sodium4-styrenesulfonate) functionalized graphene-modified electrode (PSS-Gr/GCE) was described. Based on the PSS-Gr composites-modified glassy carbon electrode as a simple voltammetric sensor, it exhibited good conductivity and high sensitivity to urapidil. Under the optimize condition, a good linear relationship was obtained between peak currents and urapidil concentrations in the wider range of 2.0 × 10?9–8.0 × 10?8 mol L?1 and 2.0 × 10?7–2.0 × 10?5 mol L?1 with detection limit of 8 × 10?10 mol L?1 (S/N = 3). Based on the high sensitivity and good selectivity of the proposed electrode, the proposed method could apply to the detect of urapidil in urapidil sustained release tablets with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号