首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite recent advances in phosphoproteomics, an efficient and simple enrichment protocol is still a challenge and of high demand aiming at large‐scale plant phosphoproteomics studies. Here, we developed a novel loading buffer system for synthesized immobilized metal affinity chromatography material targeting plant samples, which was prepared by a simple one‐step esterification between polyvinyl alcohol and phosphoric acid and then was subjected to immobilize Ti4+. SEM and Fourier transform IR spectroscopy were used to assure the synthesis protocol of the polyvinyl alcohol‐based Ti4+ immobilized material, and the specific surface areas and pore volumes of the polymers were measured. The selectivity for phosphopeptide enrichment from α‐casein was improved by optimizing the pH and components of the loading buffer. By using potassium hydrogen phthalate/hydrochloric acid with pH at 2.50 as the loading buffer, 19 phosphopeptides with high intensity were identified. The final optimized protocol was adapted to salt‐stressed maize leaves for phosphoproteome analysis. A total of 57 phosphopeptides containing 59 phosphorylated sites from 50 phosphoproteins were identified in salt‐stressed maize leaf. The research was meaningful to obtain much more information about phosphoproteins leading to the comprehension of salt resistance and salt‐inducible phosphorylated processes of maize leaves.  相似文献   

2.
Reversible protein phosphorylation plays a critical role in liver development and function. Comprehensively cataloging the phosphoproteins and their phosphorylation sites in human liver tissue will facilitate the understanding of physiological and pathological mechanisms of liver. Owing to lacking of efficient approach to fractionate phosphopeptides, nanoflow‐RPLC with long‐gradient elution was applied to reduce the complexity of the phosphopeptides in this study. Two approaches were performed to further improve the coverage of phosphoproteome analysis of human liver tissue. In one approach, ten‐replicated long‐gradient LC‐MS/MS runs were performed to analyze the enriched phosphopeptides, which resulted in the localization of 1080 phosphorylation sites from 495 proteins. In another approach, proteins from liver tissue were first fractionated by SDS‐PAGE and then long‐gradient LC‐MS/MS analysis was performed to analyze the phosphopeptides derived from each fraction, which resulted in the localization of 1786 phosphorylation sites from 911 proteins. The two approaches showed the complementation in phosphoproteome analysis of human liver tissue. Combining the results of the two approaches, identification of 2225 nonredundant phosphorylation sites from 1023 proteins was obtained. The confidence of phosphopeptide identifications was strictly controlled with false discovery rate (FDR)≤1% by a MS2/MS3 target‐decoy database search approach. Among the localized 2225 phosphorylated sites, as many as 70.07% (1559 phosphorylated sites) were also reported by others, which confirmed the high confidence of the sites determined in this study. Considering the data acquired from low accuracy mass spectrometer and processed by a conservative MS2/MS3 target‐decoy approach, the number of localized phosphorylation sites obtained for human liver tissue in this study is quite impressive.  相似文献   

3.
《Electrophoresis》2018,39(2):334-343
Differential proteomics targeting the protein abundance is commonly used to follow changes in biological systems. Differences in localization and degree of post‐translational modifications of proteins including phosphorylations are of tremendous interest due to the anticipated role in molecular regulatory processes. Because of their particular low abundance in prokaryotes, identification and quantification of protein phosphorylation is traditionally performed by either comparison of spot intensities on two‐dimensional gels after differential phosphoprotein staining or gel‐free by stable isotope labeling, sequential phosphopeptide enrichment and following LC‐MS analysis. In the current work, we combined in a proof‐of‐principle experiment these techniques using 14N/15N metabolic labeling with succeeding protein separation on 2D gels. The visualization of phosphorylations on protein level by differential staining was followed by protein identification and determination of phosphorylation sites and quantification by LC‐MS/MS. This approach should avoid disadvantages of traditional workflows, in particular the limited capability of peptide‐based gel‐free methods to quantify isoforms of proteins. Comparing control and stress conditions allowed for relative quantification in protein phosphorylation in Bacillus pumilus exposed to hydrogen peroxide. Altogether, we quantified with this method 19 putatively phosphorylated proteins.  相似文献   

4.
A facile two‐step method for preparing chitosan‐based immobilized metal ion affinity chromatography was developed. First, chitosan was phosphorylated by esterification with phosphoric acid, and then titanium was chelated onto the phosphorylated chitosan. The obtained chitosan‐based titanium immobilized metal ion affinity chromatography was ultrafine microparticles and had good dispersibility in acidic buffer. The selectivity and sensitivity were evaluated by phosphopeptide enrichment of mixtures of α‐casein and bovine serum albumin. The enriched peptides were analyzed by mass spectrum. Enrichment protocols were optimized and the optimum‐loading buffer was 80% acetonitrile with 1% trifluoroacetic acid. With α‐casein concentration as low as 2 pmol, 12 phosphopeptides were detected with considerably high intensity from the digest mixtures of α‐casein and bovine serum albumin with molar ratio of 1:200. The microparticles was also applied in real biological samples, 29 phosphoproteins containing 40 phosphorylated sites were identified from salt‐stressed Arabidopsis thaliana leaves.  相似文献   

5.
Equine β‐casein is phosphorylated at variable degrees and isoforms carrying 3 to 7 phosphate groups (3P–7P) have been found in milk, but the phosphorylated amino acid residues of each isoform are not yet identified. In the present work, the different phosphorylation variants were first isolated by ion‐exchange chromatography and then hydrolysed by trypsin to generate caseinophosphopeptides (CPPs), each containing all the potential phosphorylation sites. The equine CPPs were prepared by metal oxide affinity chromatography, a method based on the affinity of phosphate groups towards titanium dioxide immobilized onto a micro‐column. This method turned out to be an efficient tool to separate the CPPs Arg1–Lys34 and Glu4–Lys34 from non‐phosphorylated peptides. Purification was achieved by reversed‐phase high‐performance liquid chromatography (RP‐HPLC) and each CPP was hydrolyzed by endoproteinase Glu‐C. Finally, the digests were analyzed by RP‐HPLC/electrospray ionization mass spectrometry (RP‐HPLC/ESI‐MS) and identified by nano‐electrospray ionization tandem mass spectrometry (nESI‐MS/MS) to locate the phosphorylated sites of the β‐casein isoforms 4P–7P with accuracy. Thus, the isoform 4P was found to be phosphorylated on residues Ser9, Ser23, Ser24, and Ser25. Addition of phosphate groups on Ser18, Thr12, and Ser10 led to the formation of the isoforms 5P–7P, respectively. The results indicated that the in vivo phosphorylation of the equine β‐casein follows a sequential way and is not randomly performed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
This study reported a pH‐mediated stacking CE coupled with ESI MS/MS method to determine the phosphorylation sites of three synthetic phosphopeptides containing structural isomers. These phosphopeptides mimic the phosphopeptides (amino acid residues 12–25) derived from the trypsin‐digested products of human lamin A/C protein. The LODs were determined to be 118, 132 and 1240 fmol for SGAQASS19TpPL22SPTR, SGAQASS19TPL22SpPTR, and SGAQASS19TpPL22SpPTR, respectively. The established method was employed to analyze the phosphorylation sites of the trypsin‐digested products of glutathione S‐transferase‐lamin A/C (1–57) fusion protein that had been phosphorylated in vitro by cyclin‐dependent kinase 1. The results indicated that this method is feasible to specifically determine the phosphorylation site from phosphopeptide isomers in the trypsin‐digested products of a kinase‐catalyzed phosphoprotein, which should benefit the investigation of protein kinase‐mediated cellular signal transduction.  相似文献   

7.
The desire to map reliable phosphorylation signaling network has motivated the development of high‐performance techniques. Targeted biochemical studies and updated methods employing MS techniques are most used in mapping the phosphorylation sites and verifying novel interactions of kinases. Previously, we have established a novel method to efficiently facilitate more comprehensive, accurate phosphorylation site mapping of individual phosphoproteins by using combination of multiple stage MS analysis with target‐decoy database search against the much smaller targeted database. In this study, by applying this method, we have identified the phosphorylation sites in human MSK1 mitogen‐ and stress‐activated protein kinase 1), which has been proved to be a multi‐phosphorylated kinase that plays key roles in various cell functions, activated by a novel interaction with MRK‐β. The results show that this method can find out not only those previously identified active sites in MSK1, but also some novel phosphorylated sites, which correlates with biochemical evidence that, besides p38 and extracellular signal‐regulated kinase, MRK‐β could also activate MSK1 through direct interaction. Hence, we conclude this method is sensitive and reliable as expected and it can be further combined with automated screening and biochemical study in efficiently building up a more comprehensive phosphoprotein network.  相似文献   

8.
Liu J  Cai Y  Wang J  Zhou Q  Yang B  Lu Z  Jiao L  Zhang D  Sui S  Jiang Y  Ying W  Qian X 《Electrophoresis》2007,28(23):4348-4358
Because reversible protein phosphorylation is central to biological regulation, many methods have been developed for the systematic parallel analysis of the phosphorylation status of large sets of proteins. To directly survey the extent of protein phosphorylation and the distribution of phosphoproteins in biological systems, we used a phosphoprotein staining method, Pro-Q Diamond dye, for the high-throughput identification of phosphoproteins. The specificity of the method was validated with protein standards and subsequently applied to an analysis of total protein from human liver Chang's cells. Proteins were separated by 2-DE, then sequentially stained with Pro-Q Diamond and Coomassie Blue G-250. After image analysis, the proteins in gel spots containing phosphoproteins were identified by MALDI-TOF/TOF-MS. A total of 269 phosphoproteins were identified, and 27 were known phosphoproteins in the SwissProt database. By comparing the relative volumes of the phosphoprotein map and the total protein map, the extent of protein phosphorylation was observed. The phosphoprotein staining method combined with 2-DE also detected polymorphisms of the phosphoproteins, and could distinguish highly abundant, but slightly phosphorylated proteins from less abundant, highly phosphorylated ones. We conclude that the phosphoprotein staining method can be used for global, quantitative phosphorylation detection.  相似文献   

9.
Phosphorylated proteins play essential roles in many cellular processes, and identification and characterization of the relevant phosphoproteins can help to understand underlying mechanisms. Herein, we report a collision‐induced dissociation top‐down approach for characterizing phosphoproteins on a quadrupole time‐of‐flight mass spectrometer. β‐casein, a protein with two major isoforms and five phosphorylatable serine residues, was used as a model. Peaks corresponding to intact β‐casein ions with charged states up to 36+ were detected. Tandem mass spectrometry was performed on β‐casein ions of different charge states (12+, and 15+ to 28+) in order to determine the effects of charge state on dissociation of this protein. Most of the abundant fragments corresponded to y, b ions, and internal fragments caused by cleavage of the N‐terminal amide bond adjacent to proline residues (Xxx‐Pro). The abundance of internal fragments increased with the charge state of the protein precursor ion; these internal fragments predominantly arose from one or two Xxx‐Pro cleavage events and were difficult to accurately assign. The presence of abundant sodium adducts of β‐casein further complicated the spectra. Our results suggest that when interpreting top‐down mass spectra of phosphoproteins and other proteins, researchers should consider the potential formation of internal fragments and sodium adducts for reliable characterization.  相似文献   

10.
The recent introduction of the La3+ precipitation method for the enrichment of phosphoproteins allows a gel‐based analysis of these posttranslationally modified proteins. However, if this method is applied to cell lysates stored in urea‐containing lysis buffer for an extended period of time, incomplete phosphoprotein recovery is observed. We ascribe this effect to the presence of urea in the lysis buffer. To overcome this problem various strategies were tested, where cell lysates stored at least for one year were utilized. By applying an optimized protocol approximately 250 proteins could be observed following separation by 2DE.  相似文献   

11.
When lipid membranes containing ω‐6 polyunsaturated fatty acyl chains are subjected to oxidative stress, one of the reaction products is 4‐hydroxy‐2‐nonenal (HNE)—a chemically reactive short chain alkenal that can covalently modify proteins. The ubiquitin proteasome system is involved in the clearing of proteins modified by oxidation products such as HNE, but the chemical structure, stability and function of ubiquitin may be impaired by HNE modification. To evaluate this possibility, the susceptibility of ubiquitin to modification by HNE has been characterized over a range of concentrations where ubiquitin forms non‐covalent oligomers. Results indicate that HNE modifies ubiquitin at only two of the many possible sites, and that HNE modification at these two sites alters the ubiquitin oligomerization equilibrium. These results suggest that any role ubiquitin may have in clearing proteins damaged by oxidative stress may itself be impaired by oxidative lipid degradation products. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A fluorescent staining technique, using selective chelation with fluorophore and metal ion to the phosphate groups of phosphoproteins in SDS‐PAGE is described. As a fluorescent dye and a metal ion, Fura 2 pentapotassium salt and Al3+ were employed, respectively. The staining method, Fura 2 stain, has sensitivities of 16–32 ng of α‐casein and β‐casein, 62 ng of ovalbumin, phosvitin, and κ‐casein using an ultraviolet transilluminator. Furthermore, Fura 2 stain is able to carry out continuative double detection of total proteins and phosphoproteins on the same gel within 3.5 h. Consequently, selective phosphoprotein and total protein detections could be obtained without other poststaining. Considering the low cost, simplicity, and speed, Fura 2 staining may provide great practicalities in routine phosphoproteomics research.  相似文献   

13.
A radical cation salt‐initiated phosphorylation of N‐benzylanilines was realized through an aerobic oxidation of the sp3 C?H bond, providing a series of α‐aminophosphonates in high yields. An investigation of the reaction scope revealed that this mild catalyst system is superior in good functional group tolerance and high reaction efficiency. The mechanistic study implied that the cleavage of the sp3 C?H bond was involved in the rate‐determining step.  相似文献   

14.
Blood platelets are important components of haemostasis. After their activation they cause healing of wounds by forming plugs and initiate repair processes. One important event in regulating this activation is the phosphorylation/dephosphorylation of multiple proteins on various tyrosine, serine and threonine residues. To understand the exact molecular mechanisms in platelet activation it is essential to identify proteins involved in the signalling pathways and to localise and characterise their phosphorylation sites. After treatment with 32P and separation by 2D-PAGE using different pI ranges, phosphorylated platelet proteins were detected by autoradiography. Phosphotyrosine-containing proteins were assigned by immunoblotting with an anti-phosphotyrosine antibody. Another approach for the identification of phosphorylated proteins was immunoprecipitation of tyrosine-phosphorylated proteins using an anti-phosphotyrosine antibody. Protein spots/bands of interest were excised from the gel, digested with trypsin and analysed by MALDI-TOF-MS and nano-LC-ESI-MS/MS, respectively. Several phosphorylated proteins could be identified and the localisation of some in vivo phosphorylation sites was possible.Abbreviations DTT 1,4-dithiothreitol - HCCA -cyano-4-hydroxycinnamic acid - PMSF phenylmethylsulfonylfluoride - PSD post source decay - TFA trifluoroacetic acid - TOF time-of-flight  相似文献   

15.
Abundant phosphorylation events control the activity of nuclear proteins involved in gene regulation and DNA repair. These occur mostly on disordered regions of proteins, which often contain multiple phosphosites. Comprehensive and quantitative monitoring of phosphorylation reactions is theoretically achievable at a residue‐specific level using 1H‐15N NMR spectroscopy, but is often limited by low signal‐to‐noise at pH>7 and T>293 K. We have developed an improved 13Cα‐13CO correlation NMR experiment that works equally at any pH or temperature, that is, also under conditions at which kinases are active. This allows us to obtain atomic‐resolution information in physiological conditions down to 25 μm . We demonstrate the potential of this approach by monitoring phosphorylation reactions, in the presence of purified kinases or in cell extracts, on a range of previously problematic targets, namely Mdm2, BRCA2, and Oct4.  相似文献   

16.
Despite its wide use as a denaturant, the mechanism by which guanidinium (Gdm+) induces protein unfolding remains largely unclear. Herein, we show evidence that Gdm+ can induce denaturation by disrupting salt bridges that stabilize the folded conformation. We study the Gdm+‐induced denaturation of a series of peptides containing Arg/Glu and Lys/Glu salt bridges that either stabilize or destabilize the folded conformation. The peptides containing stabilizing salt bridges are found to be denatured much more efficiently by Gdm+ than the peptides containing destabilizing salt bridges. Complementary 2D‐infrared measurements suggest a denaturation mechanism in which Gdm+ binds to side‐chain carboxylate groups involved in salt bridges.  相似文献   

17.
The biomimic reactions of N‐phosphoryl amino acids, which involved intramolecular penta‐coordinate phosphoric‐carboxylic mixed anhydrides, are very important in the study of many biochemical processes. The reactivity difference between the α‐COOH group and β‐COOH in phosphoryl amino acids was studied by experiments and theoretical calculations. It was found that the α‐COOH group, and not β‐COOH, was involved in the ester exchange on phosphorus in experiment. From MNDO calculations, the energy of the penta‐coordinate phosphoric intermediate containing five‐member ring from α‐COOH was 35 kJ/mol lower than that of the six‐member one from β‐COOH. This result was in agreement with that predicted by HF/6‐31G** and B3LYP/6‐31G** calculations. Theoretical three‐dimensional potential energy surface for the intermediates predicted that the transition states 4 and 5 involving α‐COOH or β‐COOH group had energy barriers of ΔE=175.8 kJ?mol?1 and 210.4 kJ?mol?1, respectively. So the α‐COOH could be differentiated from β‐COOH intramolecularly in aspartic acids by N‐phosphorylation. © 2001 John Wiley & Sons, Inc. Int J Quant Chem 83: 41–51, 2001  相似文献   

18.
Despite recent advances in phosphoproteome research, detection and characterization of multi-phosphopeptides have remained a challenge. Here we present a novel IMAC strategy for effective extracting multi-phosphopeptides from complex samples, through Ga3+ chelation to the adenosine tri-phosphate (ATP)-functionalized magnetic nanoparticles (Ga3+-ATP-MNPs). The high specificity of Ga3+-ATP-MNPs was demonstrated by efficient enriching multi-phosphopeptides from the digest mixture of β-casein and BSA with molar ratio as low as 1:5000. Ga3+-ATP-MNPs were also successfully applied for the phosphoproteome analysis of rat liver mitochondria, resulting in the identification of 193 phosphopeptides with 331 phosphorylation sites from 158 phosphoproteins. In other words, 54.4% of the phosphopeptides trapped by Ga3+-ATP-MNPs were observed with more than one phosphorylated sites, resulting in significant improvement on the identification of peptides with multi-phosphorylated sites. The high specificity of Ga3+-ATP-MNPs towards multi-phosphopeptides may be due to the synergistic effect of the strong hydrophilic surface functionalized by ATP and the proper chelating strength provided by Ga3+. Moreover, the unique magnetic core of Ga3+-ATP-MNPs also facilitates the isolation process and on-plate enrichment for direct MALDI MS analysis with limit of detection as low as 30 amol. This new affinity-based protocol is expected to provide a powerful approach for characterizing multiple phosphorylation sites on proteins in complex and dilute analytes, which may be explored as complementary technique for improving the coverage of phosphoproteome.  相似文献   

19.
Preparation of proteins from salt‐gland‐rich tissues of mangrove plant is necessary for a systematic study of proteins involved in the plant's unique desalination mechanism. Extraction of high‐quality proteins from the leaves of mangrove tree species, however, is difficult due to the presence of high levels of endogenous phenolic compounds. In our study, preparation of proteins from only a part of the leaf tissues (i.e. salt gland‐rich epidermal layers) was required, rendering extraction even more challenging. By comparing several extraction methods, we developed a reliable procedure for obtaining proteins from salt gland‐rich tissues of the mangrove species Avicennia officinalis. Protein extraction was markedly improved using a phenol‐based extraction method. Greater resolution 1D protein gel profiles could be obtained. More promising proteome profiles could be obtained through 1D‐LC‐MS/MS. The number of proteins detected was twice as much as compared to TUTS extraction method. Focusing on proteins that were solely present in each extraction method, phenol‐based extracts contained nearly ten times more proteins than those in the extracts without using phenol. The approach could thus be applied for downstream high‐throughput proteomic analyses involving LC‐MS/MS or equivalent. The proteomics data presented herein are available via ProteomeXchange with identifier PXD001691.  相似文献   

20.
《Electrophoresis》2017,38(24):3079-3085
Protein phosphorylation, one of the most important post‐translational modifications, plays critical roles in many biological processes. Thus, it is necessary to precisely detect, identify and understand the phosphoproteins from protein mixture for the study of cell biology. We introduce a sensitive and specific detection method for phosphoproteins in sodium dodecyl sulfate‐polyacrylamide gel electrophoresis (SDS‐PAGE). Anthracene Chrome Red A (ACRA) combined with the trivalent metal ion (Al3+) is converted to fluorescent complex and the fluorescence is sharply increased by a change of pH environment. Phosphoproteins and non‐phosphoproteins can be easily distinguished by the fluorescence quenching due to the structural change of ACRA‐Al3+‐phosphoprotein complex, unlike non‐phosphoprotein complex. The method using ACRA is a negative staining based on the fluorescence quenching and has a high sensitivity comparable to Pro‐Q Diamond stain. ACRA stain can detect 1–2 ng of α‐casein and β‐casein, 8–16 ng of ovalbumin (OVA) and κ‐casein within 130 min. Moreover, the ACRA stain showed similar linear dynamic ranges and RSD to Pro‐Q stain. The linear dynamic ranges of ACRA and the values of correlation coefficient were for OVA (8–500 ng, correlation coefficient r = 0.999), α‐casein (4–500 ng, r  = 0.992), β‐casein (4–500 ng, r  = 0.996), and κ‐casein (8–500 ng, 0.998), respectively. On the other hand, the values of the relative standard deviations (RSD) ranged from 2.33 to 3.56% for ACRA. The method is sensitive, specific, simple, rapid and compatible with total protein stain such as SYPRO Ruby stain. Therefore, ACRA stain can be an advanced method for phosphoprotein detection in gels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号