首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 518 毫秒
1.
Cao J  Chen J  Yi L  Li P  Qi LW 《Electrophoresis》2008,29(11):2310-2320
Oil-in-water (O/W) and water-in-oil (W/O) MEEKC were compared for their abilities to separate and detect eight phenolic acids and five diterpenoids in Radix et Rhizoma Salviae Miltiorrhizae (RRSM). The effects of oil type and concentration, organic modifier, SDS, and buffer concentration on separation were examined in order to optimize the two methods. Oil contents and organic modifier were found to markedly influence the separation selectivity for both O/W and W/O systems. SDS concentration rarely affected separation resolution for O/W MEEKC, and separation of eight phenolic acids and five diterpenoids could be improved by changing the buffer concentration for W/O MEEKC. A highly efficient O/W MEEKC separation method, where the 13 compounds were separated with baseline resolution, was achieved by using a microemulsion solution of pH 8.0 containing 0.6% cyclohexane, 3.0% SDS, 6.0% 1-butanol, and 3.0% ACN. The W/O MEEKC was unable to resolve all the components. In addition, the analytic time in O/W MEEKC was shorter than that in W/O MEEKC. Finally, the developed O/W MEEKC method was successfully applied to determine analytic compounds in RRSM samples.  相似文献   

2.
Hua Yang  Yao Ding  Ping Li 《Electrophoresis》2013,34(9-10):1273-1294
Microemulsion electrokinetic chromatography (MEEKC) is a CE separation technique, which utilizes buffered microemulsions as the separation media. In the past two decades, MEEKC has blossomed into a powerful separation technique for the analysis of a wide range of compounds. Pseudostationary phase composition is so critical to successful resolution in EKC, and several variables could be optimized including surfactant/co‐surfactant/oil type and concentration, buffer content, and pH value. Additionally, MEEKC coupled with online sample preconcentration approaches could significantly improve the detection sensitivity. This review comprehensively describes the development of MEEKC from the period 1991 to 2012. Areas covered include basic theory, microemulsion composition, improving resolution and enhancing sensitivity methods, detection techniques, and applications of MEEKC.  相似文献   

3.
Cao J  Li P  Yi L 《Journal of chromatography. A》2011,1218(52):9428-9434
A new CE system using ionic liquids coated multi-walled carbon nanotubes (ILs-MWNTs) as pseudostationary phase was developed for the simultaneous determination of four flavonoids, four phenolic acids and two saponins. Several parameters affecting the separation were studied, including the choice of ILs, ILs-MWNTs concentration, the respective use of ILs and MWNTs, buffer pH, SDS concentration and borate content. Results revealed that the addition of ILs-MWNTs in running electrolytes enhanced the separation of target compounds compared to conventional micelle because the surface of carbon nanotubes interacted favorably with the analytes. Under the optimum conditions, a baseline separation was achieved for these analytes within 11 min in a 41.5 cm of effective length fused-silica capillary. At a voltage of 28.0 kV, the separation was carried out in a 10mM borate buffer (pH 9.0) containing 100mM SDS, 6% propanol and 4 μg mL(-1) ILs-MWNTs. All calibration curves showed good linearity (r(2)>0.9990) within the test ranges. The intra- and inter-day precisions as determined from standard solutions were below 3.30% and 6.23%, respectively. The recoveries for ten compounds were found to range from 85.5 to 101.8%. The method was successfully applied for the determination of three types of compounds in Qishenyiqi dropping pills. Our experimental results indicated that the proposed method offered new opportunities for the analysis of complex samples.  相似文献   

4.
The separation of anionic, cationic and neutral drugs in microemulsion electrokinetic chromatography (MEEKC) was studied with a statistical experimental design. The concentration of sodium dodecyl sulfate (SDS, surfactant), 1-butanol (co-surfactant) and borate buffer and the factors Brij 35 (surfactant), 2-propanol (organic solvent) and cassette temperature were varied simultaneously, while the parameters pH (9.2), the concentration of octane (oil, 0.8% w/w), the voltage (10 kV) and the dimension of the fused-silica capillary, were kept constant. Eight different model substances were chosen with different hydrophobicities. Two of the analytes were positively charged, two were negatively charged, and the remaining four were neutral or close to neutral at the pH explored. The importance of each parameter on the separation window, the plate height and the retention factor for each of the analytes was studied by means of multiple linear regression (MLR) models. A new response was evaluated for anions, the quotient between the effective mobility in the microemulsion and the effective mobility in the corresponding buffer. Factors affecting selectivity changes were also explored, and it was found that SDS and 2-propanol had the largest effect on selectivity.  相似文献   

5.
Microemulsion EKC (MEEKC) was developed for quantitative analysis of curcuminoids, such as curcumin (C), demethoxycurcumin (D), and bis-demethoxycurcumin (B). MEEKC separation of curcuminoids was optimized, and a change in resolution was explained using a modified equation for resolution in MEEKC without electroosmosis. The suitable MEEKC conditions for separation of curcuminoids were obtained to be the microemulsion buffer containing 50 mM phosphate buffer at pH 2.5, 1.1% v/v n-octane as oil droplets, 180 mM SDS as surfactant, 890 mM 1-butanol as cosurfactant, and 25% v/v 2-propanol as organic cosolvent; applied voltage of -15 kV; and separation temperature 25 degrees C. Achieved baseline resolution of C:D and D:B was obtained with R(s) -2.4 and analysis time within 18 min. In addition, high accuracy and precision of the method were obtained. This MEEKC method was used for quantitative determination of individual curcuminoids in medicinal turmeric capsules and powdered turmeric used as coloring additive in food, with simple sample preparation such as solvent extraction, dilution, and filtration, and without cleaning up by SPE.  相似文献   

6.
Two phases coexist in an aqueous system that contains the two surfactants cationic gemini 12‐3‐12,2Br? and anionic SDS. An aqueous two‐phase system (ATPS) is formed in a narrow region of the ternary phase diagram different from that of traditional aqueous cationic‐anionic surfactant systems. In that region, the molar ratio of gemini to SDS varies with the total concentration of surfactants. ATPS not only has higher stability but also has longer phase separation time for the new systems than that of the traditional system. Furthermore, the optical properties of ATPS are different at different total concentrations. All of these experimental observations can be attributed to the unique properties of gemini surfactant and the synergy between the cationic gemini surfactant and the anionic surfactant SDS.  相似文献   

7.
We recently introduced a pressure‐assisted sweeping‐reversed migration‐EKC (RM‐EKC) method for preconcentration of neutral polar N‐nitrosamines with low affinity for the micellar phase. The type of surfactant and phase ratio are dominant factors in dictating the magnitude of interactions between analyte and micellar phase, thus four surfactants (anionic and cationic) with a range of functionalities (SDS, ammonium perfluorooctanoate (APFO), bile salts, and cetyltrimethylammonium chloride (CTAC)) were evaluated for sweeping‐RM‐EKC of highly polar N‐nitrosamines. All gave acceptable results for sweeping‐RM‐EKC when used in high concentrations (≥200 mM) with low EOF. While no single surfactant was superior by all measures, all but the bile salts had useful performance characteristics. APFO showed the narrowest peak widths and highest number of theoretical plates, though two species co‐migrated at all concentrations (25–300 mM); SDS and the cationic surfactant CTAC also showed good separation characteristics and could resolve all peaks, but CTAC had wider separation window. Various types of capillaries coated for EOF control were compared for use with anionic and cationic surfactants. A commercial zero‐EOF capillary coated with a polymer bearing sulfonic acid functional groups showed superior EOF suppression and reproducibility of migration time with all surfactants.  相似文献   

8.
Surfactant based enhanced oil recovery (EOR) is an interesting area of research for several petroleum researchers. In the present work, individual and mixed systems of anionic and cationic surfactants consisting of sodium dodecyl sulphate (SDS) and cetyltrimethylammonium bromide (CTAB) in different molar ratios were tested for their synergistic effect on the crude oil-water interfacial tension (IFT) and enhanced oil recovery performance. The combination of these two surfactant systems showed a higher surface activity as compared to individual surfactants. The effect of mixed surfactant systems on the IFT and critical micellar concentration (CMC) is strongly depends on molar ratios of the two surfactant. Much lower CMC values were observed in case of mixed surfactant systems prepared at different molar ratios as compared to individual surfactant systems. The lowest CMC value was found when the molar concentration of SDS was higher than the CTAB. When the individual and mixed surfacant systems were tested for EOR performance through flooding experiments, higher ultimate oil recovery was obtained from mixed surfactant flooding compared to individual surfactants. Combination of SDS and CTAB or probably other anionic-cationic surfactants show synergism with substantial ability to reduce crude oil water IFT and can be a promising EOR method.  相似文献   

9.
This report describes the use of surfactant‐coated graphitized multiwalled carbon nanotubes (SC‐GMWNTs) as a novel pseudostationary phase in CE with diode array detection for the determination of phenolic acids and tanshinones in herbal and urine samples. Several parameters influencing the separation were studied, such as the concentrations of SDS, GMWNTs, and isopropanol; choice of carbon nanotubes; sodium borate content; and buffer pH. The results revealed that the presence of SC‐GMWNTs in buffer enhanced the separation efficiency for the target analytes relative to conventional micelles due to the strong interaction between the surface of the GMWNTs and the target compounds. Under the optimum conditions, the method showed good linearity, with correlation coefficients higher than 0.9950. LODs were in the range of 0.71–3.10 μg/mL. Furthermore, satisfactory separations were achieved with good recovery values in the range of 89.97 and 103.30% when 10 mM borate, 30 mM SDS, 10% isopropanol, and 6 μg/mL SC‐GMWNTs were introduced into the buffer solution.  相似文献   

10.
A microemulsion electrokinetic chromatographic (MEEKC) method was developed for the separation of six catechins, specific marker phytochemicals of Cistus species. The MEEKC method involved the use of sodium dodecyl sulfate (SDS) as surfactant, heptane as organic solvent and butan-1-ol as co-solvent. In order to have a better stability of the studied catechins, the separation was performed under acidic conditions (pH 2.5 phosphate buffer). The effects of SDS concentration and of the amount of organic solvent and co-solvent on the analyte resolution were evaluated. The optimized conditions (heptane 1.36% (w/v), SDS 2.31% (w/v), butan-1-ol 9.72% (w/v) and 50 mM sodium phosphate buffer (pH 2.5) 86.61% (w/v)) allowed a useful and reproducible separation of the studied analytes to be achieved. These conditions provided a different separation profile compared to that obtained under conventional micellar electrokinetic chromatography (MECK) using SDS. The method was validated and applied to the determination of catechin and gallocatechin in lyophilized extracts of Cistus incanus and Cistus monspeliensis.  相似文献   

11.
Recent applications of microemulsion electrokinetic chromatography   总被引:1,自引:0,他引:1  
Huie CW 《Electrophoresis》2006,27(1):60-75
Compared to MEKC, the presence of a water-immiscible oil phase in the microemulsion droplets of microemulsion EKC (MEEKC) gives rise to some special properties, such as enhanced solubilization capacity and enlarged migration window, which could allow for the improved separation of various hydrophobic and hydrophilic compounds, with reduced sample pretreatment steps, unique selectivities and/or higher efficiencies. Typically, stable and optically clear oil-in-water microemulsions containing a surfactant (SDS), oil (octane or heptane), and cosurfactant (1-butanol) in phosphate buffer are employed as separation media in conventional MEEKC. However, in recent years, the applicability of reverse MEEKC (water-in-oil microemulsions) has also been demonstrated, such as for the enhanced separation of highly hydrophobic substances. Also, during the past few years, the development and application of MEEKC for the separation of chiral molecules has been expanded, based on the use of enantioselective microemulsions that contained a chiral surfactant or chiral alcohol. On the other hand, the application of MEEKC for the characterization of the lipophilicity of chemical substances remains an active and important area of research, such as the use of multiplex MEEKC for the high-throughput determination of partition coefficients (log P values) of pharmaceutical compounds. In this review, recent applications of MEEKC (covering the period from 2003 to 2005) are reported. Emphases are placed on the discussion of MEEKC in the separation of chiral molecules and highly hydrophobic substances, as well as in the determination of partition coefficients, followed by a survey of recent applications of MEEKC in the analysis of pharmaceuticals, cosmetics and health-care products, biological and environmental compounds, plant materials, and foods.  相似文献   

12.
《Electrophoresis》2018,39(19):2439-2445
An on‐line large volume sample stacking with polarity switching (LVSS) method was proposed for simultaneously determining lignanoids and ginsenosides in MEEKC. The parameters including the pH value and concentration of buffer solution, SDS, organic modifier, oil phase, running voltage, and temperature as well as injection time, sample matrix, stacking voltage, and time influencing separation and stacking were systematically optimized. The method was verified by performing precision, accuracy, stability, and recovery. Its reliability was proved by separating and quantifying two lignanoids and three ginsenosides in Shengmai injectionSMI. The sensitivity of these compounds was improved by MEEKC‐LVSS method for 6–11 times than conventional MEEKC. Thus, this developed on‐line MEEKC‐LVSS method was sensitive, practical, and reliable.  相似文献   

13.
Xiao  Wen  Chen  Cen  Zhang  Qian  Zhang  Qi-Hui  Hu  Yuan-Jia  Xia  Zhi-Ning  Yang  Feng-Qing 《Chromatographia》2015,78(21):1385-1393

Isoflavones are a very important group of natural products. This study investigated the separation of eight isoflavones, namely ononin, daidzin, genistin, biochanin A, formononetin, puerarin, genistein, and daidzein, from pueraria by micellar electrokinetic chromatography (MEKC) with different surfactants. The following micellar systems of MEKC were systematically compared for the analysis of these isoflavones: (1) a single surfactant comprising the anionic surfactant sodium dodecyl sulfate (SDS), the cationic surfactant hexadecyltrimethylammonium bromide, the neutral surfactant polyoxyethylene sorbitan monolaurate (Tween 20), and the ionic liquid-type surfactant (also a cationic surfactant) 1-dodecyl-3-methylimidazolium tetrafluoroborate (C12MIMBF4); (2) different single surfactants with 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) as an additive (modifier); and (3) mixed micelles of SDS + Tween 20 and C12MIMBF4 + Tween 20. Both SDS with BMImBF4 as additive and mixed micelles of SDS + Tween 20 had the highest separation efficiency for the eight investigated compounds. Furthermore, the SDS with BMImBF4 as additive was more stable (good repeatability of retention time and peak shape of analytes) than mixed micelles of SDS + Tween 20, which may be the result of a stabilizing effect of BMImBF4. Therefore, the final analytical conditions were 15 mM SDS added with 50 mM BMImBF4 in 30 mM sodium tetraborate (STB, pH 9.5) as running buffer; applied voltage, 20 kV; injection, 50 mbar for 5 s; cartridge temperature, 25 °C; compounds were detected at 260 nm. The developed method was fully validated (limit of detection, limit of quantification, intraday precision, inter-day precision, and recovery) and successfully applied to determine the eight analytes in three Radix Puerariae samples. The present study indicated that SDS with ionic liquids as additive in MEKC was suitable for the analysis of isoflavones.

  相似文献   

14.
The chemical pollutants 2‐nitrophenol (2‐NP) and 2,4,6‐trinitrophenol (2,4,6‐TNP) were studied for their separation from water by the paper capillary permeation adsorption technique by the use of the four cationic surfactants dodecyltrimethylammonium chloride (DTAC), tetradecyltrimethylammonium bromide (TTAB), cetyltrimethylammonium bromide (CTAB), cetylpyridinium chloride (CPC) as regulators. The effect of pH and the concentration of surfactant on the separatability have been investigated. A nearly 100% separatability was obtained for each pollutant at its optimum pH and surfactant concentration. It was shown that the separation was accomplished via surface adsorption onto the fibers of paper. The change in separatability at basic pH 11 with surfactant variety was analyzed. The result shows that the surfactant with a longer chain alkyl group is more effective for the separation of 2‐NP and the surfactants with 16 carbons in the long chain alkyl group are most effective. The surfactants with 12 carbons or more in the long alkyl group but containing no aromatic group such as pyridyl group are equally effective for accomplishing an efficient separation of 2,4,6‐TNP. Selective separation of 2‐NP from an admixture of 2‐NP plus 2,4,6‐TNP was attempted. The optimum surfactant for each pollutant was tested with seawater for removing the pollutant. The goal of this study is to search for an optimum cationic surfactant and optimum separation conditions for nitrophenols.  相似文献   

15.
The use of surfactant mixtures to affect both EOF and separation selectivity in electrophoresis with PDMS substrates is reported, and capacitively coupled contactless conductivity detection is introduced for EOF measurement on PDMS microchips. First, the EOF was measured for two nonionic surfactants (Tween 20 and Triton X‐100), mixed ionic/nonionic surfactant systems (SDS/Tween 20 and SDS/Triton X‐100), and finally for the first time, mixed zwitterionic/nonionic surfactant systems (TDAPS/Tween 20 and TDAPS/Triton X‐100). EOF for the nonionic surfactants decreased with increasing surfactant concentration. The addition of SDS or TDAPS to a nonionic surfactant increased EOF. After establishing the EOF behavior, the separation of model catecholamines was explored to show the impact on separations. Similar analyte resolution with greater peak heights was achieved with mixed surfactant systems containing Tween 20 and TDAPS relative to the single surfactant system. Finally, the detection of catecholamine release from PC12 cells by stimulation with 80 mM K+ was performed to demonstrate the usefulness of mixed surfactant systems to provide resolution of biological compounds in complex samples.  相似文献   

16.
A microemulsion electrokinetic chromatography (MEEKC) method was developed to analyze and detect eight food colorants (tartrazine, fast green FCF, brilliant blue FCF, allura red AC, indigo carmine, sunset yellow FCF, new coccine, and carminic acid), which are commonly used as food additives in various food products. The effects of sodium dodecyl sulfate (SDS) surfactant, organic modifier, cosurfactant, and oil were examined in order to optimize the separation. The amount of organic modifier (acetonitrile) and SDS surfactant were determined as apparent influences on the separation resolution while the type of oil and cosurfactant rarely affected the separation selectivity of the eight colorants. A highly efficient MEEKC separation method, where the eight colorants were separated with baseline resolution within 14 min, was achieved by using a microemulsion solution of pH 2.0 containing 3.31% SDS, 0.81% octane, 6.61% 1-butanol, and 10% acetonitrile. This optimal MEEKC method has a higher separation efficiency and similar detection limit when compared to conventional capillary electrophoresis (CE) method. Furthermore, a sample pretreatment is rarely needed when this MEEKC technique is used to analyze colorants in food products, whereas a suitable sample pretreatment (for example solid-phase extraction) has to be employed prior to CE separation in order to eliminate matrix interferences resulting from the constituents of the food sample.  相似文献   

17.
Microemulsion electrokinetic chromatography (MEEKC) is an electrodriven separation technique. Separations are generally achieved using microemulsions consisting of surfactant-coated nanometer-sized oil droplets suspended in aqueous buffer. A cosurfactant such as a short-chain alcohol is generally used to stabilize the microemulsion. This review summarizes the various microemulsion types and compositions that have been used in MEEKC. The effects of key-operating variables such as surfactant type and concentration, cosurfactant type and concentration, buffer pH and type, oil type and concentration, use of organic solvent and cyclodextrin additions, and temperature are described. Specific examples of water-in-oil microemulsions and chirally selective separations are also covered.  相似文献   

18.
A microemulsion electrokinetic chromatographic (MEEKC) method was developed for the separation of six catechins, specific marker phytochemicals of Cistus species. The MEEKC method involved the use of sodium dodecyl sulfate (SDS) as surfactant, heptane as organic solvent and butan-1-ol as co-solvent. In order to have a better stability of the studied catechins, the separation was performed under acidic conditions (pH 2.5 phosphate buffer). The effects of SDS concentration and of the amount of organic solvent and co-solvent on the analyte resolution were evaluated. The optimized conditions (heptane 1.36% (w/v), SDS 2.31% (w/v), butan-1-ol 9.72% (w/v) and 50 mM sodium phosphate buffer (pH 2.5) 86.61% (w/v)) allowed a useful and reproducible separation of the studied analytes to be achieved. These conditions provided a different separation profile compared to that obtained under conventional micellar electrokinetic chromatography (MECK) using SDS. The method was validated and applied to the determination of catechin and gallocatechin in lyophilized extracts of Cistus incanus and Cistus monspeliensis.  相似文献   

19.
Selectivity in microemulsion electrokinetic chromatography   总被引:3,自引:0,他引:3  
Microemulsion electrokinetic chromatography (MEEKC) is a most promising separation technique providing good selectivity and high separation efficiency of anionic, cationic as well as neutral solutes. In MEEKC lipophilic organic solvents dispersed as tiny droplets in an aqueous buffer by the use of surfactants provide a pseudo-stationary phase to which the solutes may have an affinity either to the surface or they may even partition into the droplets. When the droplets are charged, typically negatively, they will migrate opposite to the electroosmotic flow and hence separation of neutral solutes may take place. In the present paper focus has been set on how to change selectivity in MEEKC. Changes in the nature of surfactant as well as in pH have been shown to be powerful tools in changing the selectivity. The type of lipophilic organic phase is of less importance for the separation of fairly lipophilic solutes. Also changes in the temperature surrounding the capillary may alter the selectivity.  相似文献   

20.
Micellar electrokinetic chromatography (MEKC) and microemulsion electrokinetic chromatography (MEEKC) are two kinds of electrokinetic capillary chromatography (EKC), which are characterized of high solubilization capacity and separation efficiency. In our previous work, some polar organic compounds and hydrophobic neutral compounds were separated successfully by EKC1-3. In this paper, these methods were used for separating six pyridoncarboylxic acid derivatives with similar structures. T…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号