首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
《Electroanalysis》2006,18(4):417-422
In dimethylformamide containing tetramethylammonium tetrafluoroborate, cyclic voltammograms for reduction of 4,4′‐(2,2,2‐trichloroethane‐1,1‐diyl)bis(chlorobenzene) (DDT) at a glassy carbon cathode exhibit five waves, whereas three waves are observed for the reduction of 4,4′‐(2,2‐dichloroethane‐1,1‐diyl)bis(chlorobenzene) (DDD). Bulk electrolyses of DDT and DDD afford 4,4′‐(ethene‐1,1‐diyl)bis(chlorobenzene) (DDNU) as principal product (67–94%), together with 4,4′‐(2‐chloroethene‐1,1‐diyl)bis(chlorobenzene) (DDMU), 1‐chloro‐4‐styrylbenzene, and traces of both 1,1‐diphenylethane and 4,4′‐(ethane‐1,1‐diyl)bis(chlorobenzene) (DDO). For electrolyses of DDT and DDD, the coulometric n values are essentially 4 and 2, respectively. When DDT is reduced in the presence of a large excess of D2O, the resulting DDNU and DDMU are almost fully deuterated, indicating that reductive cleavage of the carbon–chlorine bonds of DDT is a two‐electron process that involves carbanion intermediates. A mechanistic scheme is proposed to account for the formation of the various products.  相似文献   

2.
海绵Spongia sp.化学成分的研究(I)   总被引:2,自引:0,他引:2  
应用气相色谱-质谱联用技术从海绵Spongia sp.中分离鉴定出4个化学成分:1.-氯-2,2-二对氯苯基乙烯(DDMU,I)、1,1-二氯-2,2-二对氯苯基乙烯(DDE,Ⅱ)、1,1-二氯-2,2-二对氯苯乙烷(DDD,Ⅲ)和角鲨烯(Ⅳ)。前3个化合物是首次从Spongia属海绵中分离得到。  相似文献   

3.
海绵Spongia sp.化学成分的研究(Ⅰ)   总被引:2,自引:0,他引:2  
应用气相色谱-质谱联用技术从海绵Spongia sp. 中分离鉴定出4个化学成分: 1-氯-2,2-二对氯苯基乙烯(DDMU,Ⅰ)、 1,1-二氯-2,2-二对氯苯基乙烯(DDE,Ⅱ)、 1,1-二氯-2,2-二对氯苯乙烷(DDD, Ⅲ)和角鲨烯(Ⅳ)。前3个化合物是首次从Spongia属海绵中分离得到。  相似文献   

4.
In 2,2,2‐trichloro‐N,N′‐bis(4‐methoxyphenyl)ethane‐1,1‐diamine, C16H17Cl3N2O2, molecules are linked into helical chains by N—H...O hydrogen bonds. Molecules of 2,2,2‐trichloro‐N,N′‐bis(4‐chlorophenyl)ethane‐1,1‐diamine, C14H11Cl5N2, are connected into a three‐dimensional framework by two independent Cl...Cl interactions and one C—H...Cl hydrogen bond.  相似文献   

5.
The reactions of dehydrochlorination of 1,1‐trichloro‐2,2‐bis(p‐chlorophenyl)ethane, DDT, and 1,1‐dichloro‐2,2‐bis(p‐chlorophenyl)ethane, DDD, with hydroxide ions were studied in various TTAB–alcohol (TTAB = tetradecyltrimethylammonium bromide) aqueous micellar solutions as a function of alcohol content. The alcohols used were heptanol, hexanol, pentanol, butanol, isobutanol, tert butanol, propanol and isopropanol. Kinetic data show that the dissociation degree of the micelles is the main factor controlling reactivity in all the TTAB–alcohol micellar solutions. This fact permits the development of a kinetic method in order to estimate the dissociation degree of the micellar aggregates present in the alcohol–TTAB aqueous micellar solutions. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 204–209, 2000  相似文献   

6.
Iron is of interest as a catalyst because of its established use in the Haber–Bosch process and because of its high abundance and low toxicity. Nitrogen‐heterocyclic carbenes (NHC) are important ligands in homogeneous catalysis and iron–NHC complexes have attracted increasing attention in recent years but still face problems in terms of stability under oxidative conditions. The structure of the iron(II) complex [1,1′‐bis(pyridin‐2‐yl)‐2,2‐bi(1H‐imidazole)‐κN3][3,3′‐bis(pyridin‐2‐yl‐κN)‐1,1′‐methanediylbi(1H‐imidazol‐2‐yl‐κC2)](trimethylphosphane‐κP)iron(II) bis(hexafluoridophosphate), [Fe(C17H14N6)(C16H12N6)(C3H9P)](PF6)2, features coordination by an organic decomposition product of a tetradentate NHC ligand in an axial position. The decomposition product, a C—C‐coupled biimidazole, is trapped by coordination to still‐intact iron(II) complexes. Insights into the structural features of the organic decomposition products might help to improve the stability of oxidation catalysts under harsh conditions.  相似文献   

7.
The electrolytic reductive dechlorination of 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT) in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]) in the presence of a cobalamin derivative afforded 1,1'-(ethylidene)bis(4-chlorobenzene)(DDO) and 1,1'-(ethenylidene)bis(4-chlorobenzene)(DDNU) with 1,1'-(2-chloroethylidene)bis(4-chlorobenzene)(DDMS); the enhanced reactivity, as well as the recyclability of the cobalamin derivative catalyst in IL, makes the present system more efficient for the development of "green" technologies.  相似文献   

8.
A new cyclic [4]rotaxane composed of two flexible bis‐macrocycles and two rigid axles is described. Each bis‐macrocycle consists of two rings attached to antipodal meso positions of a central Zn porphyrin through single C? C bonds. Each ring incorporates a 2,9‐diphenyl‐1,10‐phenanthroline chelation site. The axles contain two coplanar bidentate sites derived from the 2,2′‐bipyridine motif. The building blocks were assembled by using a one‐pot threading‐and‐stoppering reaction, which afforded the [4]rotaxane in 50 % yield. The “gathering‐and‐threading” effect of copper(I) was utilised in the formation of a [4]pseudorotaxane, which was immediately converted to the corresponding [4]rotaxane by a quadruple CuAAC stoppering reaction. The rotaxane contains two face‐to‐face zinc porphyrins, which allowed the coordination of ditopic guest substrates. The rotaxane host showed remarkable flexibility and was able to adjust its conformation to the guest size. It can be distended and accommodate rod‐like guests of 2.6 to 15.8 Å in length.  相似文献   

9.
As representative porphyrin model compounds, the structures of `picket‐fence' porphyrins have been studied intensively. The title solvated complex salt {systematic name: (4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane)potassium(I) [5,10,15,20‐tetrakis(2‐tert‐butanamidophenyl)porphyrinato]iron(II) n‐hexane monosolvate}, [K(C18H36N2O6)][Fe(C64H64N8O4)Cl]·C6H14 or [K(222)][Fe(TpivPP)Cl]·C6H14 [222 is cryptand‐222 or 4,7,13,16,21,24‐hexaoxa‐1,10‐diazabicyclo[8.8.8]hexacosane, and TpivPP is meso‐α,α,α,α‐tetrakis(o‐pivalamidophenyl)porphyrinate(2−)], [K(222)][Fe(TpivPP)Cl]·C6H14, is a five‐coordinate high‐spin iron(II) picket‐fence porphyrin complex. It crystallizes with a potassium cation chelated inside a cryptand‐222 molecule; the average K—O and K—N distances are 2.81 (2) and 3.05 (2) Å, respectively. One of the protecting tert‐butyl pickets is disordered. The porphyrin plane presents a moderately ruffled distortion, as suggested by the atomic displacements. The axial chloride ligand is located inside the molecular cavity on the hindered porphyrin side and the Fe—Cl bond is tilted slightly off the normal to the porphyrin plane by 4.1°. The out‐of‐plane displacement of the metal centre relative to the 24‐atom mean plane (Δ24) is 0.62 Å, indicating a noticeable doming of the porphyrin core.  相似文献   

10.
Trifluoroacetic acid‐catalyzed condensation of pyrrole with electron‐deficient and sterically hindered 3,5‐bis(trifluoromethyl)benzaldehyde results in the unexpected production of a series of meso‐3,5‐bis(trifluoromethyl)phenyl‐substituted expanded porphyrins including [22]sapphyrin 2 , N‐fused [22]pentaphyrin 3 , [26]hexaphyrin 4 , and intact [32]heptaphyrin 5 together with the conventional 5,10,15,20‐tetrakis(3,5‐bis(trifluoromethyl)phenyl)porphyrin 1 . These expanded porphyrins are characterized by mass spectrometry, 1H NMR spectroscopy, UV/Vis/NIR absorption spectroscopy, and fluorescence spectroscopy. The optical and electrochemical measurements reveal a decrease in the HOMO–LUMO gap with increasing size of the conjugated macrocycles, and in accordance with the trend, the deactivation of the excited singlet state to the ground state is enhanced.  相似文献   

11.
The first synthesis of 4,8‐dihydro‐bis‐furazano[3,4‐b:3′4′‐e]pyrazine bearing 2,2‐bis(methoxy‐NNO‐azoxy)ethyl groups has been developed. These compounds are obtained by aza‐Michael reaction of 1,1‐bis(methoxy‐NNO‐azoxy)ethene or its equivalents, such as 2,2‐bis(methoxy‐NNO‐azoxy)ethanol derivatives, with 4,8‐dihydro‐bis‐furazano[3,4‐b:3′4′‐e]pyrazine.  相似文献   

12.
Chiral ligand (A)‐N,N′‐Bis(2‐hydroxy‐3,5‐di‐tert‐butyl‐arylmethyl)‐1,1′‐binaphthalene‐2,2′‐diamine derived from the reduction of Schiff base (R)‐2,2′‐bis (3,5‐di‐tert‐butyl‐2‐hydroxybenzylideneamino)‐1, 1′‐binaphthyl with LiAlH4, is fairly effective in the asymmetric addition reaction of diethylzinc to aldehydes by which good yields (46%‐94%) of the corresponding sec‐alcohols can be obtained in moderate ee (51%‐79%) with R configuration for a variety of aldehydes.  相似文献   

13.
While six‐coordinate iron(III) porphyrin complexes with pyridine N‐oxides as axial ligands have been studied as they exhibit rare spin‐crossover behavior, studies of five‐coordinate iron(III) porphyrin complexes including neutral axial ligands are rare. A five‐coordinate pyridine N‐oxide–5,10,15,20‐tetraphenylporphyrinate–iron(III) complex, namely (pyridine N‐oxide‐κO)(5,10,15,20‐tetraphenylporphinato‐κ4N,N′,N′′,N′′′)iron(III) hexafluoroantimonate(V) dichloromethane disolvate, [Fe(C44H28N4)(C5H5NO)][SbF6]·2CH2Cl2, was isolated and its crystal structure determined in the space group P. The porphyrin core is moderately saddled and the Fe—O—N bond angle is 122.08 (13)°. The average Fe—N bond length is 2.03 Å and the Fe—ONC5H5 bond length is 1.9500 (14) Å. This complex provides a rare example of a five‐coordinate iron(III) porphyrin complex that is coordinated to a neutral organic ligand through an O‐monodentate binding mode.  相似文献   

14.
Pyrazolidine‐3,5‐diones and their derivatives exhibit a wide range of biological activities. Seeking to explore the effect of combining a hydrocarbyl ring substituent, as present in sulfinpyrazone (used to treat gout), with a chlorinated aryl ring, as present in muzolimine (a diuretic), we explored the reaction between 1‐phenylpyrazolidine‐3,5‐dione and 4‐chlorobenzaldehyde under mildly basic conditions in the expectation of producing the simple condensation product 4‐(4‐chlorobenzylidene)‐1‐phenylpyrazolidine‐3,5‐dione. However, the reaction product proved to be meso‐(E,E)‐1,1′‐[1,2‐bis(4‐chlorophenyl)ethane‐1,2‐diyl]bis(phenyldiazene), C26H20Cl2N4, and a tentative mechanism is proposed. Crystallization from ethanol produces two concomitant polymorphs, i.e. a triclinic form, (I), in the space group P, and a monoclinic form, (II), in the space group C2/c. In both polymorphs, the molecules lie across centres of inversion, but in (II), the molecules are subject to whole‐molecule disorder equivalent to configurational disorder with occupancies of 0.6021 (19) and 0.3979 (19). There are no hydrogen bonds in the crystal structure of polymorph (I), but the molecules of polymorph (II) are linked by C—H...π(arene) hydrogen bonds into complex chains, which are further linked into sheets by C—H...N interactions.  相似文献   

15.
1,1′‐Bis(trimethylsilylamino)ferrocene reacts with trimethyl‐ and triethylgallium to give the μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetraalkyldigallanes. These were converted into the 1,3‐bis(trimethylsilyl)‐2‐alkyl‐2‐pyridine‐1,3,2‐diazagalla‐[3]ferrocenophanes, of which the ethyl derivative was characterized by X‐ray structural analysis. Treatment of gallium trichloride with N,N′‐dilithio‐1,1′‐bis(trimethylsilylamino)ferrocene affords μ‐[ferrocene‐1,1′‐diyl‐bis(trimethylsilylamido)]tetrachlorodigallane along with bis(trimethylsilyl)‐2,2‐dichloro‐1‐aza‐3‐azonia‐2‐gallata‐[3]ferrocenophane as a side product, and both were structurally characterized by X‐ray analysis. The solution‐state structures of the new gallium compounds and aspects of their molecular dynamics in solution were studied by NMR spectroscopy (1H, 13C, 29Si NMR).  相似文献   

16.
The heteroscorpionate ligand 2,2‐bis(3,5‐dimethylpyrazol‐1‐yl)‐1,1‐diphenylethanol, C24H26N4O, features in the solid state an intramolecular O—H…N hydrogen bond. A heteroscorpionate tungsten complex, cis‐[2,2‐bis(3,5‐dimethylpyrazolyl)‐1,1‐diphenylethanolato]chloridodioxidotungsten(VI) tetrahydrofuran monosolvate, [W(C24H25N4O)ClO2]·C4H8O, was prepared by the simple mixing of solutions of the ligand and WOCl4 in tetrahydrofuran. The tungsten complex was isolated after standing for several weeks. The complex exhibits a κ3N,N′,O‐coordination of the ligand. This simple synthetic procedure allows access to the cis isomer in high yield without additional purification steps. The Hirshfeld surface analysis shows a change of the intermolecular contacts due to the coordination of the WO2Cl unit with the ligand molecule.  相似文献   

17.
Multiporphyrinic assemblies were quantitatively formed, in one step, from a gable‐like zinc(II) bis‐porphyrin ZnP2 and free‐base porphyrins bearing pyridyl groups. The different fragments are held together by axial 4′‐N(pyridyl)–Zn interactions. Formation of a macrocycle ZnP2?(4′‐cisDPyP) and a bis‐macrocycle (ZnP2)2?(TPyP) is discussed. The macrocycle and the bis‐macrocycle were crystallized and studied by X‐ray diffraction, which confirmed the excellent complementarity between the various components. Spectrophotometric and spectrofluorimetric titrations and studies reveal high association constants for both multiporphyrinic assemblies due to the almost perfect geometrical match between the interacting units. As expected, energy transfer from the zinc porphyrin component to the free‐base porphyrin quenches the fluorescence of the zinc porphyrin components in both compounds. But while in ZnP2?(4′‐cis DPyP) sensitization of the emission of the free‐base porphyrin was observed, in (ZnP2)2?(TPyP) excitation of the peripheral Zn porphyrin units does not lead to quantitative sensitization of the luminescence of the free‐base porphyrin acceptor. An unusual HOMO–HOMO electron transfer reaction from ZnP2 to the excited TPyP unit was detected and studied.  相似文献   

18.
Catalytic activity and oxidative stability of a series of iron and manganese porphyrins with 2‐chlorophenyl, phenyl and 4‐methoxyphenyl at the meso positions and metallosalens (Mn‐ and Fe‐salens) including N,N′‐bis(salicylidene)ethylenediamine, N,N′‐bis(5‐ chlorosalicylidene)ethylenediamine and N,N′‐bis(2,4‐dihydroxysalicylidene)ethylenediamine for the oxidation of olefins with tetra‐n‐butylammonium periodate (TBAP) and tetra‐n‐butyl‐ammonium Oxone (TBAO) have been investigated and compared. Although the metalloporphyrins showed an increased catalytic activity relative to the Schiff base complexes, the former provided no significant catalytic advantage over the latter. Also, a comparable or slightly higher oxidative stability was observed for the Schiff base complexes under the reaction conditions. Furthermore, in spite of large difference between the oxidizing ability of TBAO and TBAP, similar patterns were observed for the order of catalytic activity and oxidative stability of the used heme and non‐heme catalysts. The introduction of a methyl group at the ɑ position of styrene led to an increase in its reactivity, indicating the dominance of electronic effects over the steric ones in these catalytic systems.  相似文献   

19.
The structures of N‐(2‐chlorophenyl)‐4‐hydroxy‐2‐methyl‐2H‐1,2‐benzothiazine‐3‐carboxamide 1,1‐dioxide and N‐(4‐chlorophenyl)‐4‐hydroxy‐2‐methyl‐2H‐1,2‐benzothiazine‐3‐carboxamide 1,1‐dioxide, both C16H13ClN2O4S, are stabilized by extensive intramolecular hydrogen bonds. The 4‐chloro derivative forms dimeric pairs of molecules lying about inversion centres as a result of intermolecular N—H...O hydrogen bonds, forming 14‐membered rings representing an R22(14) motif; the 2‐chloro derivative is devoid of any such intermolecular hydrogen bonds. The heterocyclic thiazine rings in both structures adopt half‐chair conformations.  相似文献   

20.
The title compounds, tris(1,10‐phenanthroline‐κ2N,N′)iron(II) bis(2,4,5‐tricarboxybenzoate) monohydrate, [Fe(C12H8N2)3](C10H5O8)2·H2O, (I), and tris(2,2′‐bipyridine‐κ2N,N′)iron(II) 2,5‐dicarboxybenzene‐1,4‐dicarboxylate–benzene‐1,2,4,5‐tetracarboxylic acid–water (1/1/2), [Fe(C10H8N2)3](C10H4O8)·C10H6O8·2H2O, (II), were obtained during an attempt to synthesize a mixed‐ligand complex of FeII with an N‐containing ligand and benzene‐1,2,4,5‐tetracarboxylic acid via a solvothermal reaction. In both mononuclear complexes, each FeII metal ion is six‐coordinated in a distorted octahedral manner by six N atoms from three chelating 1,10‐phenanthroline or 2,2′‐bipyridine ligands. In compound (I), the FeII atom lies on a twofold axis in the space group C2/c, whereas (II) crystallizes in the space group P21/n. In both compounds, the uncoordinated carboxylate anions and water molecules are linked by typical O—H...O hydrogen bonds, generating extensive three‐dimensional hydrogen‐bond networks which surround the cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号