首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 673 毫秒
1.
In this paper an incompressible smoothed particle hydrodynamics (Incom‐SPH) model is used to simulate the interactions between the free surface flow and a moving object. Incom‐SPH method is a two‐step semi‐implicit hydrodynamic formulation of the SPH algorithm and is capable of accurately treating the free surface deformations and impact forces during the solid–fluid interactions. For a free‐falling object, its motion is tracked by an additional Lagrangian algorithm based on Newton's law to couple with the Incom‐SPH program. The developed model is employed to investigate the water entry of a free‐falling wedge. The accuracy of the computations is validated by the good agreement in predicting the relevant hydrokinematic and hydrodynamic parameters. Finally, a numerical test is performed to study the influence of spatial resolution on the water entry features. The Incom‐SPH modeling coupled with the solid–fluid interaction algorithm could provide a promising computational tool to predict the slamming problems in coastal and offshore engineering. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, a corrected symmetric and periodic density reinitialized SPH (CSPDR‐SPH) method is proposed and extended to simulate the viscoelastic free surface flows based on the Phan–Thien–Tanner model. The improvements mainly lie in deriving a corrected symmetric kernel gradient, and combining it with a periodic density reinitialization procedure. In addition, a simple artificial viscosity and a simple artificial stress form are adopted. Thus, the CSPDR‐SPH method has higher accuracy and better stability than the SPH method, and conserves both linear and angular momentums. The consistency and convergence of the CSPDR‐SPH method are justified by approximating a function in one and two dimensions. The merits of CSPDR‐SPH method are demonstrated by several benchmarks. The simple flow in a two‐dimensional channel is investigated to show the capability of the CSPDR‐SPH method to simulate the viscoelastic free surface flow. Then the CSPDR‐SPH method is extended to simulate the impacting drop problem. Numerical results show that the CSPDR‐SPH method can precisely capture the viscoelastic free surface. The Reynolds number, Weissenberg number and elongation parameter have remarkable effect on the flows. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The gridless smoothed particle hydrodynamics (SPH) method is now commonly used in computational fluid dynamics (CFD) and appears to be promising in predicting complex free‐surface flows. However, increasing flow complexity requires appropriate approaches for taking account of turbulent effects, whereas some authors are still working without any turbulence closure in SPH. A review of recently developed turbulence models adapted to the SPH method is presented herein, from the simplistic point of view of a one‐equation model involving mixing length to more sophisticated (and thus realistic) models like explicit algebraic Reynolds stress models (EARSM) or large eddy simulation (LES). Each proposed model is tested and validated on the basis of schematic cases for which laboratory data, theoretical or numerical solutions are available in the general field of turbulent free‐surface incompressible flows (e.g. open‐channel flow and schematic dam break). They give satisfactory results, even though some progress should be made in the future in terms of free‐surface influence and wall conditions. Recommendations are given to SPH users to apply this method to the modelling of complex free‐surface turbulent flows. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
The paper presents a 2‐D large eddy simulation (LES) modelling approach to investigate the properties of the plunging waves. The numerical model is based on the smoothed particle hydrodynamics (SPH) method. SPH is a mesh‐free Lagrangian particle approach which is capable of tracking the free surfaces of large deformation in an easy and accurate way. The Smagorinsky model is used as the turbulence model due to its simplicity and effectiveness. The proposed 2‐D SPH–LES model is applied to a cnoidal wave breaking and plunging over a mild slope. The computations are in good agreement with the documented data. Especially the computed turbulence quantities under the breaking waves agree better with the experiments as compared with the numerical results obtained by using the k–ε model. The sensitivity analyses of the SPH–LES computations indicate that both the turbulence model and the spatial resolution play an important role in the model predictions and the contributions from the sub‐particle scale (SPS) turbulence decrease with the particle size refinement. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the performance of the incompressible SPH (ISPH) method and an improved weakly compressible SPH (IWCSPH) method for free surface incompressible flows are compared and analyzed. In both methods, the Navier–Stokes equations are solved, and no artificial viscosity is used. The ISPH algorithm in this paper is based on the classical SPH projection method with common treatments on solid boundaries and free surfaces. The IWCSPH model includes some advanced corrective algorithms in density approximation and solid boundary treatment (SBT). In density approximation, the moving least squares (MLS) approach is applied to re‐initialize density every several steps to obtain smoother and more stable pressure fields. An improved coupled dynamic SBT algorithm is implemented to obtain stable pressure values near solid wall areas and, thus, to minimize possible numerical oscillations brought in by the solid boundaries. Three representative numerical examples, including a benchmark test for hydrostatic pressure, a dam breaking problem and a liquid sloshing problem, are comparatively analyzed with ISPH and IWCSPH. It is demonstrated that the present IWCSPH is more attractive than ISPH in modeling free surface incompressible flows as it is more accurate and more stable with comparable or even less computational efforts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a computational model for free surface flows interacting with moving rigid bodies. The model is based on the SPH method, which is a popular meshfree, Lagrangian particle method and can naturally treat large flow deformation and moving features without any interface/surface capture or tracking algorithm. Fluid particles are used to model the free surface flows which are governed by Navier–Stokes equations, and solid particles are used to model the dynamic movement (translation and rotation) of moving rigid objects. The interaction of the neighboring fluid and solid particles renders the fluid–solid interaction and the non‐slip solid boundary conditions. The SPH method is improved with corrections on the SPH kernel and kernel gradients, enhancement of solid boundary condition, and implementation of Reynolds‐averaged Navier–Stokes turbulence model. Three numerical examples including the water exit of a cylinder, the sinking of a submerged cylinder and the complicated motion of an elliptical cylinder near free surface are provided. The obtained numerical results show good agreement with results from other sources and clearly demonstrate the effectiveness of the presented meshfree particle model in modeling free surface flows with moving objects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The finite particle method (FPM) is a modified SPH method with high order accuracy while retaining the advantages of SPH in modeling problems with free surfaces, moving interfaces, and large deformations. In both SPH and FPM, kernel gradient is necessary in kernel and particle approximation of a field function and its derivatives. In this paper, a new FPM is presented, which only involves kernel function itself in kernel and particle approximation. The kernel gradient is not necessary in the whole computation, and this approach is thus referred to as a kernel gradient free (KGF) SPH method. This is helpful when a kernel function is not differentiable or the resultant kernel gradient is not sufficiently smooth, and thus it is more general in selecting a kernel function. Moreover, different from the original FPM with an asymmetric corrective matrix, in the new FPM, the resultant corrective matrix is symmetric, and this is advantageous in particle approximations. A series of numerical examples have been conducted to show the efficiencies of KGF‐SPH including one‐dimensional mathematical tests of polynomial functions with equal or variable smoothing length and two‐dimensional incompressible fluid flow of shear cavity. It is found that KGF‐SPH is comparable with FPM in accuracy and is flexible as SPH. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
This paper focuses on the fluid boundary separation problem of the conventional dynamic solid boundary treatment (DSBT) and proposes a modified DSBT (MDSBT). Classic 2D free dam break flows and 3D dam break flows against a rectangular box are used to assess the performance of this MDSBT in free surface flow and violent fluid–structure interaction, respectively. Another test, water column oscillations in a U‐tube, is specially designed to reveal the applicability of dealing with two types of particular boundaries: the wet–dry solid boundary and the large‐curvature solid boundary. A comparison between the numerical results and the experimental data shows that the MDSBT is capable of eliminating the fluid boundary separation, improving the accuracy of the solid boundary pressure calculations and preventing the unphysical penetration of fluid particles. Using a 2D SPH numerical wave tank with MDSBT, the interactions between regular waves and a simplified vertical wave barrier are simulated. The numerical results reveal that the maximum horizontal force occurs at the endpoint of the vertical board, and with the enlargement of the relative submerged board length, the maximum moment grows linearly; furthermore, the relative average mass transportation under the breakwater initially increases to 11.14 per wave strike but is later reduced. The numerical simulation of a full‐scale 3D wave barrier with two vertical boards shows that the wave and structure interactions in the practical project are far more complicated than in the simplified 2D models. The SPH model using the MDSBT is capable of providing a reference for engineering designs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper a truly incompressible version of the smoothed particle hydrodynamics (SPH) method is presented to investigate the surface wave overtopping. SPH is a pure Lagrangian approach which can handle large deformations of the free surface with high accuracy. The governing equations are solved based on the SPH particle interaction models and the incompressible algorithm of pressure projection is implemented by enforcing the constant particle density. The two‐equation kε model is an effective way of dealing with the turbulence and vortices during wave breaking and overtopping and it is coupled with the incompressible SPH numerical scheme. The SPH model is employed to reproduce the experiment and computations of wave overtopping of a sloping sea wall. The computations are validated against the experimental and numerical data found in the literatures and good agreement is observed. Besides, the convergence behaviour of the numerical scheme and the effects of particle spacing refinement and turbulence modelling on the simulation results are also investigated in further detail. The sensitivity of the computed wave breaking and overtopping on these issues is discussed and clarified. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
固体介质中SPH方法的拉伸不稳定性问题研究进展   总被引:4,自引:1,他引:3  
光滑粒子流体动力学法(smoothed particle hydrodynamics, SPH)是一种基于核估计的无网格Lagrange数值方法.它用粒子方程离散流体动力学的连续方程, 既可以处理有限元难于处理的大变形和严重扭曲问题, 又可以处理有限差分法不易处理的自由边界和材料界面的问题, 在固体力学中的冲击、爆炸和裂纹模拟中具有广阔的发展前景.但是, 该算法的拉伸不稳定性(tensile instability)问题是它在固体力学领域中应用的最大障碍.对SPH稳定性分析表明, 算法不稳定性的条件仅与应力状态和核函数的2阶导数有关.目前, 应力点法(stress points)、Lagrange核函数法、人工应力法(artificialstress)、修正光滑粒子法(corrective smoothed particle method, CSPM)和守恒光滑法(conservativesmoothing)以及其他一些方法成功地改善了SPH的拉伸不稳定性, 但是每一种方法都不能彻底解决SPH的拉伸不稳定性问题.本文介绍了SPH法的方程和Von Neumann稳定性分析的思想, 以及国内外在这几个方面的研究成果及其最新进展, 同时指出目前研究中存在的问题和研究的方向.   相似文献   

11.
提出了一种SPH应力修正算法,即模型中的拉应力和压应力分别采用不同的插值核函数和状态方程来处理,改善应力稳定性问题。介绍了一种改进的Quintic核函数,用于改善模型中压应力的稳定性。通过增加钟型核函数的光滑长度,改善模型中拉应力的稳定性。采用该应力修正算法模拟了无重力条件下方形液滴的震荡变形过程,对比分析了不同算法的模拟结果。此外,为进一步验证算法的适用性,模拟了溃坝算例。研究表明,改进的Quintic型核函数明显改善了粒子聚集现象,该SPH应力修正方法可以使液滴具有更均匀的粒子分布以及更光滑的自由表面,有效改善了SPH方法中的压应力不稳定作用以及自由表面流的模拟精度。  相似文献   

12.
A mesh-less smoothed particle hydrodynamics (SPH) model for bed-load transport on erosional dam-break floods is presented. This mixture model describes both the liquid phase and the solid granular material. The model is validated on the results from several experiments on erosional dam breaks. A comparison between the present model and a 2-phase SPH model for geotechnical applications (Gadget Soil; TUHH) is performed. A demonstrative 3D erosional dam break on complex topography is investigated. The present 3D mixture model is characterised by: no tuning parameter for the mixture viscosity; consistency with the Kinetic Theory of Granular Flow; ability to reproduce the evolution of the free surface and the bed-load transport layer; applicability to practical problems in civil engineering. The numerical developments of this study are represented by a new SPH scheme for bed-load transport, which is implemented in the SPH code SPHERA v.8.0 (RSE SpA), distributed as FOSS on GitHub.  相似文献   

13.
The kernel gradient free (KGF) smoothed particle hydrodynamics (SPH) method is a modified finite particle method (FPM) which has higher order accuracy than the conventional SPH method. In KGF‐SPH, no kernel gradient is required in the whole computation, and this leads to good flexibility in the selection of smoothing functions and it is also associated with a symmetric corrective matrix. When modeling viscous incompressible flows with SPH, FPM or KGF‐SPH, it is usual to approximate the Laplacian term with nested approximation on velocity, and this may introduce numerical errors from the nested approximation, and also cause difficulties in dealing with boundary conditions. In this paper, an improved KGF‐SPH method is presented for modeling viscous, incompressible fluid flows with a novel discrete scheme of Laplacian operator. The improved KGF‐SPH method avoids nested approximation of first order derivatives, and keeps the good feature of ‘kernel gradient free’. The two‐dimensional incompressible fluid flow of shear cavity, both in Euler frame and Lagrangian frame, are simulated by SPH, FPM, the original KGF‐SPH and improved KGF‐SPH. The numerical results show that the improved KGF‐SPH with the novel discrete scheme of Laplacian operator are more accurate than SPH, and more stable than FPM and the original KGF‐SPH. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
An incompressible‐smoothed particle hydrodynamics (I‐SPH) formulation is presented to simulate impulsive waves generated by landslides. The governing equations, Navier–Stokes equations, are solved in a Lagrangian form using a two‐step fractional method. Landslides in this paper are simulated by a submerged mass sliding along an inclined plane. During sliding, both rigid and deformable landslides mass are considered. The present numerical method is examined for a rigid wedge sliding into water along an inclined plane. In addition solitary wave generated by a heavy box falling inside water, known as Scott Russell wave generator, which is an example for simulating falling rock avalanche into artificial and natural reservoirs, is simulated and compared with experimental results. The numerical model is also validated for gravel mass sliding along an inclined plane. The sliding mass approximately behaves like a non‐Newtonian fluid. A rheological model, implemented as a combination of the Bingham and the general Cross models, is utilized for simulation of the landslide behaviour. In order to match the experimental data with the computed wave profiles generated by deformable landslides, parameters of the rheological model are adjusted and the numerical model results effectively match the experimental results. The results prove the efficiency and applicability of the I‐SPH method for simulation of these kinds of complex free surface problems. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
SPH方法模拟工程问题时通常遇到不连续的物理量,因此有必要引入不连续的SPH方法.本文基于Taylor展开公式推导了2D和3D的不连续SPH公式.针对越过材料界面不连续物理量的计算,给出了大变形计算中确定不连续位置的方法,基于Taylor展开公式,从理论上给出了确定不连续公式中x_(k)点的方法,并用数值方法验证了此方法的有效性.比较和讨论了初始SPH方法,CSPM方法与不连续SPH方法处理不连续量的效果.结果显示不连续SPH方法在计算不连续量时有较大的优势.  相似文献   

16.
A depth‐averaged two‐dimensional model has been developed in the curvilinear co‐ordinate system for free‐surface flow problems. The non‐linear convective terms of the momentum equations are discretized based on the explicit–finite–analytic method with second‐order accuracy in space and first‐order accuracy in time. The other terms of the momentum equations, as well as the mass conservation equation, are discretized by the finite difference method. The discretized governing equations are solved in turn, and iteration in each time step is adopted to guarantee the numerical convergence. The new model has been applied to various flow situations, even for the cases with the presence of sub‐critical and supercritical flows simultaneously or sequentially. Comparisons between the numerical results and the experimental data show that the proposed model is robust with satisfactory accuracy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
基于SPH法的二维矩形液舱晃荡研究   总被引:4,自引:1,他引:3  
液体晃荡是一种复杂的流体运动现象,自由液面的存在使得该现象具有很强的非线性和随机性。针对二维矩形液舱在不同振幅水平激励下的纵荡问题,应用SPH法对其进行了数值研究。首先计算了小振幅激励下的纵荡,计算结果分别与线性理论解、文献VOF法结果及文献SPH法结果作了比较分析,以验证所建数值模型的合理性;然后计算了液舱在大振幅水平激励下的纵荡,着重分析了不同振幅下液体晃荡的速度向量图、液面波动时程、压强波动时程、动量波动时程以及波动的频谱图,并将计算所得液面波动结果与小振幅激励下的液面波动结果作了比较。分析结果表明,在大振幅水平激励下,液面波动的波峰值较小振幅下的结果有较为明显的增大,而波谷值则无过大的变化,总体波动幅值比小振幅下的结果大;随着激励幅值的增大,液面波动幅值呈现明显增大的趋势,压强的整体波动幅值也呈增大趋势,动量波动的均值亦有明显增大;波动能量随着激励幅值的增大而增大并向第一阶频率区域集中。SPH法对处理液体大幅晃荡这种具有自由表面大变形的问题有十分优越的特性。  相似文献   

18.
The objective of this paper is to present an extension of the Lagrangian Smoothed Particle Hydrodynamics (SPH) method to solve three-dimensional shell-like structures undergoing large deformations. The present method is an enhancement of the classical stabilized SPH commonly used for 3D continua, by introducing a Reissner–Mindlin shell formulation, allowing the modeling of moderately thin structure using only one layer of particles in the shell mid-surface. The proposed Shell-based SPH method is efficient and very fast compared to the classical continuum SPH method. The Total Lagrangian Formulation valid for large deformations is adopted using a strong formulation of the differential equilibrium equations based on the principle of collocation. The resulting non-linear dynamic problem is solved incrementally using the explicit time integration scheme, suited to highly dynamic applications. To validate the reliability and accuracy of the proposed Shell-based SPH method in solving shell-like structure problems, several numerical applications including geometrically non-linear behavior are performed and the results are compared with analytical solutions when available and also with numerical reference solutions available in the literature or obtained using the Finite Element method by means of ABAQUS© commercial software.  相似文献   

19.
The prediction of the penetration of three-dimensional (3D) shaped charge into steel plates is a challenging task. In this paper, the smoothed particle hydrodynamics (SPH) method is applied to simulate the jet formation generated by the shaped charge detonation and its damage to steel plates. The Jones–Wilkins–Lee (JWL) equation of state (EOS), Tillotson EOS, and elastic–perfectly plastic constitutive model were incorporated into SPH for the modeling of explosive detonation and dynamic behavior of metal material. The compute unified device architecture (CUDA) parallel programming interface has been employed in SPH to improve the computational efficiency of SPH. Firstly, the constitutive models and EOSs are validated by 3D TNT slab detonation and aluminum–aluminum (Al–Al) high velocity impact. Then the jet formation of the shaped charge detonation and its penetration into the steel plates are investigated using the graphics processing unit (GPU)-accelerated SPH methodology. The numerical results of these test cases are compared against the published experimental data or analytical result, which shows that the GPU-accelerated SPH methodology is capable of tackling the 3D shaped charge detonation and penetration involving millions of particles with high computational efficiency.  相似文献   

20.
The smoothed particle hydrodynamics (SPH) method is one of the powerful Lagrangian tools for modeling free surface flows. However, it suffers from particle disorder, which leads to interpolation and numerical errors. To overcome this problem, several techniques have been introduced until now, among which the particle shifting technique (PST) based on Fick's law is an efficient one. The current form of this method needs tuning parameters to fulfill numerical stability criteria. In this study, to eliminate calibration factors, a new shifting coefficient is derived theoretically based on particle positions before and after shifting, regardless of other parameters such as velocity, pressure, time step intervals, etc. The only required input is particle positions, and the main concern is conserving particle densities in their updated positions. In addition to the proposed PST, a new distribution index (DI) is introduced for measuring the spatial uniformity of particles. Furthering the research, some novel treatments are also studied to improve particle movements near free surface boundary. The proposed idea is only assessed for ISPH method in this study, and its performance in other SPH schemes needs more investigations. Following this innovative method, it is validated by modeling different cases including dam break flow, paddle movement, and elliptical water drop. In all cases, particle arrangements have been improved by means of the modified shifting method. In that sense, good agreements between simulation results with experimental data, analytical solutions, and other numerical methods approve the ability of the developed method in simulating free surface flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号